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S1. Supplemental figures and tables 16 

This section provides figures S1 to S9 and table S1. Fig. S1 shows the standard deviation of the 17 

interferometric phase as a function of the spatial coherence and number of looks. Fig. S2 18 

demonstrates the performance of four weighting functions in different temporal decorrelation 19 

settings using the mean RMSE of 10,000 realizations of the inverted phase time-series as a 20 

function of the number of looks. Fig. S3 demonstrates the simulation of the unwrapped 21 



2 

interferogram for unwrapping error correction with the bridging method, considering the ground 22 

deformation, tropospheric turbulence, phase ramps and decorrelation noise. Fig. S4 shows the 23 

output percentage of interferograms with unwrapping errors as a function of the LASSO 24 

parameter to find its suitable value range. Fig. S5 demonstrates the necessity of adding the step 25 

function during the topographic residual correction in the presence of displacement jump using 26 

both simulated and read data. Fig. S6 shows the coherence matrix of Sentinel-1 dataset for GPS 27 

stations within Sierra Negra. Fig. S7 shows the estimated residual phase time-series. Fig. S8 28 

shows the coherence-based network modification for the Sentinel-1 data used in the discussion 29 

of the network redundancy in section 6.3. Fig. S9 compares the displacement time-series from 30 

the approaches in GIAnT and MintPy with and without unwrapping error correction and 31 

weighted network inversion. Table S1 summaries the information of SAR data used in the paper 32 

and their configurations for InSAR stack processing. 33 

  34 
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 35 

Figure S1. Phase standard deviation versus spatial coherence for PS and DS. Related to equation 36 

(6). (a) Standard deviation of interferometric phase as function of coherence for DS (solid lines) 37 

and PS (dashed lines) with 1, 4 and 20 looks. The black dashed line marks the effective boundary 38 

for PS (0.9 < |&| ≤ 1). (b) Lookup table to convert spatial coherence to phase standard deviation 39 

for number of looks in [1, 80].  40 

  41 
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 42 
Figure S2. Performance indicator for four weighting functions based on (left panel) the mean 43 

RMSE of 10,000 realizations of inverted phase time-series as a function of the number of looks. 44 

Related to Fig. 1, which uses &) = 0.0 and + = 200 days. Right panel: same as left panel but 45 

shown in differential RMSE with respect to inverse-variance weighting. From top to bottom for 46 

different temporal decorrelation settings.  47 
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 48 

Figure S3. Simulate interferogram for unwrapping error correction with the bridging method. 49 

Related to Fig. 2. We consider an area of 300 by 300 pixels with spatial resolution of 62 m in 50 

both directions, illustrated by radar echoes in a Sentinel-1-like geometry in descending orbit 51 

(with an incidence angle of 34 deg and heading angle of -168 deg). (a) Deformation phase 52 

caused by a Mogi source (x = 120 row, y = 120 col, z = 2 km under the free surface with a 53 

volume change of 106 m3), (b) tropospheric turbulence modeled as an isotropic two-dimensional 54 

surface with a power law behavior (the multiplier of spectrum amplitude p0=1e-3, assuming a 55 

flat area without stratified tropospheric delay; Hanssen, 2001), (c) phase ramp modeled as a 56 

linear surface, and (d) simulated decorrelation noise (see section S3). The water body mask is 57 

rescaled from the real DEM in western Kyushu, Japan. We specify the spatial coherence of 0.6 58 

and 0.001 for pixels on land and water respectively with the number of looks of 15 by 5. 59 

  60 
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 61 

Figure S4. Simulation for the optimal LASSO trade-off parameter α. Related to equation (11) in 62 

section 3.2. Mean output percentage of 100 realization of interferograms with unwrapping errors 63 

after correction as a function of the nonnegative α value for different input percentage of 64 

interferograms with unwrapping errors. The network of interferograms is the same as Fig. 4a. 65 

The simulation result shows that any number of α in [10-4, 100] works. We choose 10-2 as default 66 

value. 67 

  68 
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 69 

Figure S5. Illustration of the step function in topographic residual correction in presence of 70 

displacement jumps. Related to equation (13) in section 4.8. (a and b) Perpendicular baseline 71 

history (from the Sentinel-1 data of section 5) and an arbitrary displacement time-series using 72 

simulated data (with a permanent displacement jump at 1 March 2016 with a magnitude of 20 73 

cm, shown as the dashed black line in (b), in addition to the topographic residual contribution 74 

from a DEM error of 50 m). Blue empty circles and orange triangles represent displacement 75 

time-series after topographic residual correction assuming quadratic model without and with a 76 

step function, respectively. (c and d) Same as (a and b) but (i) using ALOS-1 data for one pixel 77 

on Cerro Azul located at [W91.270°, S0.928°] and (ii) the black dashed line for the displacement 78 

time-series without topographic residual correction. In both simulated and real data, the 79 

disagreement between the low-frequency quadratic model and the high-frequency displacement 80 

jump leads to biased estimation of the topographic residual (Du et al., 2007) and adding a step 81 

function could effectively eliminate this estimation bias. This estimation bias is amplified in the 82 

first ALOS-1 acquisition by its large perpendicular baseline (the difference between black 83 

dashed line and the blue empty circles in (d)). 84 
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 85 

Figure S6. Coherence matrix of Sentinel-1 dataset for GPS stations within Sierra Negra caldera. 86 

Related to Fig. 8 in section 5.1. Both X and Y axis indicate the number of SAR acquisitions. 87 

Station GV10 is located in a densely vegetated area outside the caldera on the rim, resulting in 88 

fast decorrelation with low spatial coherence on interferograms with more than 2 lags. 89 

  90 
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 91 

Figure S7. The estimated residual phase time-series -./0123 of ALOS-1 dataset. Related to 92 

equation (13-14) in section 4.7 and Fig. 12 in section 5.4. A quadratic phase ramp has been 93 

estimated and removed from each acquisition. This is used in equation (14) to calculate the 94 

residual phase RMS value. Phases on 2 September 2007, 10 March 2010 and 25 April 2010 are 95 

severely contaminated by ionospheric streaks and are automatically identified as outliers. Phase 96 

on 20 January 2009 is contaminated by ionosphere also but is not identified as outlier due to its 97 

relatively small magnitude. 98 

  99 
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 100 

Figure S8. Coherence-based network modification for Sentinel-1 data used in section 6.3 in 101 

Sierra Negra. Related to Fig. 14 in section 6.3. (a) Coherence matrix of the customized area of 102 

interest along the trap door fault within Sierra Negra caldera (marked by the white rectangle in 103 

(b)). A network of interferograms with 30 sequential connections (2475 in total) are generated 104 

from 98 SAR acquisitions, as shown in the lower triangle. The upper triangle shows the 105 

interferogram kept after the network modification. A maximum of 20 connections are shown in 106 

Fig. 14 only. (b) Temporal coherence of the network inversion from the interferogram stack with 107 

a maximum of 20 connections. 108 

  109 
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 110 

Figure S9. Impact of (a) weighted network inversion and (b) unwrapping error correction on the 111 

displacement time-series. Related to Fig. 16 in section 6.5. The comparison within (a) shows that 112 

the difference on pixel B (Alcedo’s flank) between MintPy and G-NSBAS is caused by the 113 

weighting during the network inversion. The comparison within (b) shows that the difference on 114 

pixel C (Fernandina’s crater) between MintPy and G-(N)SBAS is caused by the unwrapping 115 

error correction. 116 

  117 



12 

Table S1. SAR dataset information with parameters used in InSAR stack processing 118 

Satellite ALOS-1 Sentinel-1A/B 

Orbit direction Ascending Descending 

Track number 133 128 (swath 1 & 2) 

Start / end date  

(# of acquisitions) 

2007-01-15 / 2011-03-13 

(22) 

2014-12-13 / 2018-06-19 

(98) 

Network selection criteria 

(# of Interferograms) 

Btemp ≤ 1800 days 

B⊥ ≤ 1800 m 

(228) 

Sequential with 5 connections 

(475) 

# of looks in range / azimuth 

direction 

8 × 16 15 × 5 

Ground pixel size in range / 

azimuth direction (m) 

60 × 51 62 × 70 

InSAR Processor ROI_PAC ISCE 

Phase Unwrapping SNAPHU SNAPHU 

  119 
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S2. Design matrices 120 

This section shows examples to generate the design matrices used in the software. A demo set of 121 

N = 8 SAR images acquired at [t1,...,t8] is used as the example. A stack of M = 18 interferograms 122 

is selected using the sequential method with 3 connections. An earthquake or volcanic eruption 123 

event occurred between t6 and t7 (red dashed line), which caused a permanent ground 124 

displacement offset. 125 

 126 

Figure S10. Network configuration of the demo dataset. Red dashed line marks the time of a 127 

displacement offset due to an earthquake or volcanic eruption. 128 

S2.1 Network inversion 129 

To generate the design matrix A for network inversion used in equation (1) in section 2.1, we 130 

first generate an : ×; matrix. For each row, it consists -1, 0 and 1 with -1 for the reference 131 

acquisition, 1 for the secondary acquisition and 0 for the rest. Due to the relative nature of 132 

InSAR measurement, the phase on the reference date (the first date by default) cannot be 133 

resolved, thus, we can only solve [-=, . . . , -?] instead of [-A, . . . , -?] and the corresponding 134 

column (the first column by default) is eliminated in the design matrix A, which results in size of 135 

: × (; − 1). 136 
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                                  (S1) 138 

 139 

S2.2 Phase closure of interferograms triplets 140 

Design matrix C describe the combination of interferograms to form the triplets used in equation 141 

(10) in section 3.2 for the phase closure unwrapping error correction. An example of C is shown 142 

below based on the demo network with number of triplets T = 16. 143 

[ 1 -1  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0] 144 

 [ 1  0 -1  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0] 145 

 [ 0  1 -1  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0] 146 

 [ 0  0  0  1 -1  0  1  0  0  0  0  0  0  0  0  0  0  0] 147 

 [ 0  0  0  1  0 -1  0  1  0  0  0  0  0  0  0  0  0  0] 148 

 [ 0  0  0  0  1 -1  0  0  0  1  0  0  0  0  0  0  0  0] 149 

 [ 0  0  0  0  0  0  1 -1  0  1  0  0  0  0  0  0  0  0] 150 
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C   = [ 0  0  0  0  0  0  1  0 -1  0  1  0  0  0  0  0  0  0]       (S2) 151 

 [ 0  0  0  0  0  0  0  1 -1  0  0  0  1  0  0  0  0  0] 152 

 [ 0  0  0  0  0  0  0  0  0  1 -1  0  1  0  0  0  0  0] 153 

 [ 0  0  0  0  0  0  0  0  0  1  0 -1  0  1  0  0  0  0] 154 

 [ 0  0  0  0  0  0  0  0  0  0  1 -1  0  0  0  1  0  0] 155 

 [ 0  0  0  0  0  0  0  0  0  0  0  0  1 -1  0  1  0  0] 156 

 [ 0  0  0  0  0  0  0  0  0  0  0  0  1  0 -1  0  1  0] 157 

 [ 0  0  0  0  0  0  0  0  0  0  0  0  0  1 -1  0  0  1] 158 

 [ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1 -1  1] 159 

S2.3 Topographic residual correction 160 

Design matrix G is used in equation (13) for topographic residual correction in section 4.8. It is 161 

in size of ; × (1 + ;MNOP + ;1Q0M), where Npoly is the user-defined polynomial order Npoly (2 by 162 

default), Nstep is the number of Heaviside step functions (0 by default) describing offsets at 163 

specific prior selected times. An example of G is shown below based on the demo network. 164 
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R =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡STU

VWX
/12Y(Z) 1 ([A − [A) (QX\QX)]

= 0
ST
U

VW]
/12Y(Z) 1 ([= − [A) (Q]\QX)]

= 0
ST
U

VŴ
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                                      (S3) 166 
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Then equation (13) can be formed as a linear system with N equations as below: 167 

 168 

-. − -.Q/NMN = Ri + -/0123                                                  (S4) 169 

 170 

where i = [jk, lm, lA, l=, nf]o is the vector of unknown parameters, -., -.Q/NMN and -/0123 are the 171 

; × 1 inverted raw phase time-series, estimated tropospheric delay time-series and residual 172 

phase time-series, respectively. We apply the least squares estimation to obtain the solution as: 173 

 174 

i. = (RoR)\ARo(-. − -.Q/NMN)                                              (S5) 175 

-./0123 = -. − -.Q/NMN − Ri.                                                  (S6) 176 

 177 

The estimated residual phase -./0123 is used to characterize the noise of phase time-series using 178 

equation (14) in section 4.9. The noise-reduced displacement time-series is given as: 179 

 180 

-3212 = -.2 − -.Q/NMN2 − \ST
U

VWp
/12Y(Z) ĵk                                         (S7) 181 

 182 

where r = 1, . . . , ; and ĵk is the estimated DEM error in i.. 183 

S2.4 Average velocity estimation 184 

For each pixel, the average velocity is estimated as s2 = t[2 + l, where s2 = − U
ST -3212  is the 185 

displacement at ti in meters, v is the unknown velocity and c is the unknown offset. The solution 186 

can be obtained using least squares approximation. An example of the design matrix E is shown 187 

below based on the demo network. 188 
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                                                          (S8) 190 

 191 

For linear displacement, the uncertainty of the estimated velocity vw is given by equation (10) in 192 

Fattahi and Amelung (2015) as: 193 

 194 

vw = x∑ (z{p|p \z}{p|p )]~p�X
(?\=)∑ (Qp\Q̅)]~p�X

                                                      (S9) 195 

 196 

where -.3212  is the predicted linear displacement at ith acquisition [̅ is the mean value of time in 197 

years. 198 

  199 
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S3. Decorrelation noise simulation 200 

S3.1 Coherence model 201 

We simulate the coherence for a stack of interferograms on one pixel using a decorrelation 202 

model with exponential decay for temporal decorrelation. The spatial coherence &Å of the jth 203 

interferogram can be expressed as (Zebker and Villasenor, 1992; Hanssen, 2001; Parizzi et al., 204 

2009): 205 

 206 

    & = &Ç0NÉ ⋅ &ÖÜ ⋅ &Q0ÉMN/áO                                               (S10) 207 

 208 

where &Ç0NÉ represents the geometric decorrelation, &ÖÜ  represents the Doppler centroid 209 

decorrelation, &Q0ÉMN/áO represents the temporal decorrelation, given by the equations below. 210 

Note that the thermal decorrelation &Qà0/ÉáO is served as the instantaneous decorrelation in 211 

temporal decorrelation &Q0ÉMN/áO (Parizzi et al., 2009). 212 

 213 

&Ç0NÉ = â1 −
|VW|
VWäãpå

,						 |éè| ≤ éèê/2Q
0,																				|éè| > éèê/2Q

                                 (S11) 214 

&ÖÜ = â 1 −
|∆ìîï|
Vñó

,						|∆òÖÜ| ≤ éáô
0,																								|∆òÖÜ| > éáô

                                (S12) 215 

&Q0ÉMN/áO([) = (&Qà0/ÉáO − &))ö\Q/ú + &)                     (S13) 216 

&Qà0/ÉáO = A
A\ù?ûüX                                                           (S14) 217 

 218 
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The critical perpendicular baseline éèê/2Q = † Vã°ê ¢ ⋅ [£§(•) is the baseline causing a spectral 219 

shift equal to the radar bandwidth Brg in range direction (Zebker and Villasenor, 1992; Hanssen, 220 

2001), where † is the radar wavelength, c is the speed of light, R is the distance between radar 221 

antenna and ground target and • is the incidence angle, SNR is the thermal signal-to-noise ratio 222 

of radar receiver. + is the time constant which depends on radar wavelength †, it’s the time for 223 

coherence to drop down to 1/e, i.e. 0.36, from its initial value (Parizzi et al., 2009; Rocca, 2007). 224 

&) is the long-term coherence, or minimum attainable coherence value, which converged over 225 

time, usually with high values in urban area and low values in vegetated area. Note that this 226 

model does not consider the seasonal behavior of temporal decorrelation, volume decorrelation, 227 

and processing-induced decorrelation. For a given set of SAR acquisitions, the geometric and 228 

Doppler centroid decorrelation is almost constant among all pixels. All parameters are deployed 229 

with typical parameters of Sentinel-1 SAR sensor.  230 

 231 

 232 

Figure S11. Simulated coherence as a function of temporal baseline, color coded by different + 233 

and &) settings used in Fig. S2. 234 
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S3.2 Simulate decorrelation noise from coherence 235 

For distributed scatterers (DS) in natural, vegetated terrain the interferometric phase exhibits 236 

highly unpredictable speckle characteristics. Its phase can be appropriately modeled by a random 237 

process, complex, stationary, circular Gaussian process in the case of SAR image. Applying the 238 

central limit theorem, the probability density function ¶sò(ß-) of interferometric phase is 239 

obtained as (equation (66) from Tough et al., 1995; equation (4.2.23) from Hanssen, 2001): 240 

 241 

¶sò(ß-) = (A\|®|])©
=T ™ ´(=¨\A)

[´(¨)]]=](©üX) × [
(=¨\A)≠
(A\≠])©Æ

X
]
(T= + £Ølnr§∞) +

A
(A\≠])©] + ±≤         (S15) 242 

± = A
=(¨\A) ∑

´(¨\X])
´(¨\X]\/)

´(¨\A\/)
´(¨\A)

A≥(=/≥A)≠]
(A\≠])ãÆ]

¨\=/¥m    243 

where ∞ = |&|lµn(ß- − ß-m), expected interferometric phase ß-m = ∂{ß-}, gamma function 244 

π(∫) = ∫ [¨\Aö\Qs[)
m , òµØ	∫ ∈ ¢ and D a finite summation term. Note that D vanishes for 245 

single-look datasets (L=1).  246 

 247 

The 10,000 realizations/samples of decorrelation noise of each interferogram (used in section 248 

2.4) is simulated by generating a distribution given by equation (S15) with corresponding 249 

coherence & and number of looks L. One example with & = 0.1 and ∫ = 9 × 3 is shown in Fig. 250 

S12. 251 

 252 
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 253 

Figure S12. Sampling the decorrelation noise based on phase PDF of distributed scatterers. 254 

Blue bars: normalized histogram of sampled decorrelation noises. Orange and green solid line: 255 

phase PDF and cumulative distribution function. 256 

 257 

 258 

Figure S13. Time-series configuration for simulation. (a) Perpendicular baseline history from 259 

the 98 Sentinel-1 images of section 5. (b) Specified time-dependent displacement used in section 260 

2.4 and 3.2. 261 

  262 
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S4. Additional software features 263 

S4.1 Customized workflow beyond smallbaselineApp.py 264 

Most scripts in MintPy are stand-alone (summarized in Table S4). Users can apply any phase 265 

correction at any time to evaluate the impact. Fig. S14 shows an example, where we use 266 

individual scripts (link on GitHub) to compare velocities estimated from displacement time-267 

series with different tropospheric delay correction methods on Alcedo volcano.  268 

 269 

 270 

Figure S14. Deformation velocity maps on Alcedo volcano from Sentinel-1 (a) without 271 

tropospheric correction, with tropospheric correction using (b) ERA-Interim, (c) MERRA-2 and 272 

(d) the empirical phase-elevation ratio method.  273 

 274 

Table S4. Stand-alone scripts in MintPy 275 

add.py Generate the sum of multiple input files 

asc_desc2horz_vert.py Project ascending and descending displacement in LOS 

direction to horizontal and vertical direction 

dem_error.py DEM error (topographic residual) correction 

diff.py Generate the difference of two input files 
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generate_mask.py Generate mask file from input file 

geocode.py Resample radar-coded files into geo coordinates, or vice 

versa. 

ifgram_inversion.py Invert network of interferograms into time-series. 

image_reconstruction.py Reconstruct network of interferograms from time-series 

image_math.py Basic mathematic operation of input file(s) 

info.py Display metadata / structure of input file 

load_data.py Load a stack of interferograms into HDF5 files 

load_gbis.py Load the inversion result from GBIS software 

load_hdf5.py Load the binary file(s) into an HDF5 file 

local_oscillator_drift.py Correct local oscillator drift for Envisat data 

mask.py Mask input data file with input mask file by setting 

values on the unselected pixels into Nan or zero. 

match.py Merge two or more geocoded files which share common 

area into one file. 

modify_network.py Modify the network setting of an ifgramStack HDF5 file. 

multilook.py Multilook input file. 

plot_coherence_matrix.py Plot the coherence matrix of one pixel, interactively. 

plot_network.py Plot the network configuration of an ifgramStack file. 

plot_transection.py Plot the value of 2D matrix along a profile. 

prep_aria.py Prepare input data from ARIA GNUW products 

prep_gamma.py Prepare metadata file for GAMMA files. 

prep_giant.py Prepare metadata file for GIAnT files. 
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prep_isce.py Prepare metadata file for ISCE files. 

prep_roipac.py Prepare metadata file for ROI_PAC files. 

prep_snap.py Prepare metadata file for SNAP geocoded products. 

reference_date.py Change the reference date of a time-series HDF5 file. 

reference_point.py Change the reference pixel of an input file. 

remove_ramp.h5 Remove phase ramps for input file. 

save_gbis.py Save input files in GBIS *.mat file format. 

save_gmt.py Save input file in GMT *.grd file format. 

save_hdfeos5.py Save input time-series into HDF-EOS5 format. 

save_kmz.py Save input file into Google Earth raster image. 

save_kmz_timeseries.h5 Save input file into Google Earth points, interactively. 

save_roipac.py Save input file into ROI_PAC style binary file format. 

select_network.py Select interferometric pairs from input baseline file.  

smallbaselineApp.py Routine time series analysis for small baseline InSAR 

stack. 

spatial_average.py Calculate average in space domain. 

spatial_filter.py Spatial filtering of input file. 

subset.py Generate a subset of (crop) input file. 

temporal_average.py Calculate average in time domain. 

temporal_derivative.py Calculate the temporal derivative of displacement time-

series. 

temporal_filter.py Smooth time-series in time domain with a moving 

Gaussian window 
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timeseries2velocity.py Invert time-series for the average velocity. 

timeseries_rms.py Calculate the root mean square for each acquisition of the 

input time-series file. 

tropo_phase_elevation.py Correct stratified tropospheric delay based on the 

empirical phase/elevation ratio method. 

tropo_pyaps.py Correct tropospheric delay estimated from global 

atmospheric model (GAM) using PyAPS software 

(Jolivet et al., 2011; 2014). 

tsview.py Interactive time-series viewer. 

unwrap_error_bridging.py Correct phase-unwrapping errors with bridging method. 

unwrap_error_ 

phase_closure.py 

Correct phase-unwrapping errors with the phase closure 

method. 

view.py 2D matrix viewer. 

 276 

S4.2 Filters tools in space and time domain 277 

The software supports filters in space or time domain built on skimage (van der Walt et al., 278 

2014). Although filtering is not applied in the routine workflow, it is a useful tool to examine the 279 

deformation signal because it allows removing undesired signals. Fig. S15 shows an example, 280 

where we use spatial Gaussian filtering to confirm a patchy, rapid subsidence signal. 281 

 282 
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 283 

Figure S15. Illustration of the spatial filtering. The LOS velocity from ALOS-1 ascending track 284 

495 acquired over Sinabung volcano, Indonesia during January 2007 to January 2011 is used. 285 

(a) Original velocity in LOS direction, (b and c) velocities after lowpass and highpass Gaussian 286 

filtering with the standard deviation of 3.0. (a) is the sum of (b) and (c). The lowpass filtering 287 

eliminated the very short spatial wavelength features, thus, highlighted the relatively long spatial 288 

wavelength deformation features, such as the volcanic deformation along the Sinabung’s 289 

southeast flank and an undocumented patchy, rapid subsidence area (up to -5.6 cm/year) is 290 

found ~6 km to the southwest of the volcano. The spatial pattern of the subsidence signal 291 

correlates well with the agricultural land use, suggesting that subsidence is caused by 292 

groundwater extraction (Chaussard et al., 2013). Reference point is a pixel at [E98.4999°, 293 

N3.1069°] outside of this figure. (d) Google Earth image for the marked rectangle area. (e) LOS 294 

displacement time-series for pixel marked by red circle in (a) at [E98.3466°, N3.1163°]. 295 
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S4.3 Interferometric pairs selection 296 

The software supports several interferometric pairs selection methods to facilitate the pre-297 

processing, such as small baseline, sequential, hierarchical, Delaunay triangulation, minimum 298 

spanning tree and star/PS-like methods, as shown in Fig. S16.  299 

 300 

Figure S16. Illustration of interferometric pairs selection. The temporal and perpendicular 301 

baselines are from Sentinel-1 dataset of section 5. For each method, network configuration on 302 

the left and the corresponding coherence matrix on the right. The spatial coherence calculation 303 

is described in section S3.1 with decorrelation rate of 200 days and long-term coherence of 0.2. 304 

The small baseline method selects interferograms with temporal and perpendicular baseline 305 

within the predefined thresholds (120 days and 200 m; Berardino et al., 2002). The sequential 306 

method selects for each acquisition with a predefined number (5) of its nearest neighbors back in 307 
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time (Reeves and Zhao, 1999). The hierarchical method specifies a predefined list of temporal 308 

and perpendicular baselines as [6 days, 300 m; 12 days, 200 m; 48 days, 100 m; 96 days, 50 m], 309 

each pair of temporal and perpendicular thresholds selects interferograms the same as small 310 

baseline method (Zhao, 2017). The Delaunay triangulation method generates triangulations in 311 

the temporal and perpendicular baseline domain and selects interferograms within the 312 

predefined maximum temporal and perpendicular baseline (120 days and 200 m; Pepe and 313 

Lanari, 2006). The minimum spanning tree method calculates a spatial coherence value based 314 

on its simple relationship with the temporal and perpendicular baseline and selects N-1 315 

interferograms that maximizes the total coherence (Perissin and Wang, 2012). The star-like 316 

method selects network of N-1 interferograms with single common reference acquisition (usually 317 

in the center of the time period; Ferretti et al., 2001). 318 

 319 

S4.4 Local oscillator drift correction for Envisat 320 

Data from Envisat’s Advanced Synthetic Aperture Radar instrument include a phase ramp in 321 

range direction due to timing errors. We correct this local oscillator drift using the empirical 322 

model given by Marinkovic and Larsen (2013). 323 

 324 

-¨æÖ2 = \ST
U 3.87 × 10\fØ([2 − [A)                                          (S16) 325 

 326 

where ([2 − [A) represents the time difference in years between SAR acquisition ti and t1 (see 327 

also Fattahi and Amelung, 2014). Since this model is independent of the InSAR phase 328 

measurement, this correction should be applied before any InSAR data-dependent phase 329 

corrections. 330 
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