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An Efficient Polyphase Filter-Based Resampling
Method for Unifying the PRFs in SAR Data
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Abstract— Variable higher pulse repetition frequencies (PRFs)
are increasingly being used to meet the stricter requirements
and complexities of current airborne and spaceborne synthetic
aperture radar (SAR) systems associated with higher resolution
and wider area products. POLYPHASE, the proposed resam-
pling scheme, downsamples and unifies variable PRFs within
a single look complex SAR acquisition and across a repeat
pass sequence of acquisitions down to an effective lower PRF.
A sparsity condition of the received SAR data ensures that the
uniformly resampled data approximate the spectral properties of
a decimated densely sampled version of the received SAR data.
While experiments conducted with both synthetically generated
and real airborne SAR data show that POLYPHASE retains
comparable performance with the state-of-the-art best linear
unbiased interpolation scheme in image quality, a polyphase
filter-based implementation of POLYPHASE offers significant
computational savings for arbitrary (not necessarily periodic)
input PRF variations, thus allowing fully on-board, in-place, and
real-time implementation.

Index Terms— Interferometric synthetic aperture radar
(InSAR), polyphase filter implementation, synthetic aperture
radar (SAR), variable pulse repetition frequency (PRF).

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) and interferometric
SAR (InSAR) find application in geophysical and envi-

ronmental remote sensing applications [1]. However, the com-
plexity of how the data are collected has had to keep pace with
advances in sensor technology. Variation in pulse repetition
frequency (PRF) is one of these complexities introduced by
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modern sensors. Methods that make use of displaced phase
centers are available to recover the unambiguous Doppler
spectrum from nonuniform spatial sampling of the synthetic
aperture. A simple two-point interpolation and multichannel
reconstruction scheme appears in [2]–[4]. For the single-
channel case, [5] provides a frequency-domain algorithm for
unambiguous recovery of the Doppler spectrum and [6] has
a computationally efficient time-domain scheme that handles
nonuniform oversampled SAR data generated from a platform
accelerating along-track. However, the method in [6] assumes
a constant PRF; the spatial nonuniformity is taken to be solely
caused by uncontrolled acceleration of the platform, which is
typically much smaller than what could be generated from
variable PRFs.

POLYPHASE, the new scheme we propose, tackles nonuni-
formity along-track within a single look complex (SLC)
single-channel or post-beamformed SAR collection arising
from different PRFs (or from arbitrary sampling). It takes in
demodulated SAR data for different acquisitions, which are
collected and oversampled at variable PRFs, and delivers uni-
formly resampled data within each acquisition at a lower con-
stant PRF in the spatial frequency domain (k-space) [7], [8].
A new polyphase filter-based implementation allows digital
filtering at the lowest possible rate, namely, the effective
output PRF rate. The result is a computationally efficient fully
on-board algorithm enabling in-place and real-time processing,
which avoids uplink/downlink data transfers and bottlenecks.
The POLYPHSE method approximately reconstructs the col-
lected data on a uniformly spaced grid along the synthetic
aperture, while preserving the resolution and Nyquist con-
straint within the cross-range extent of interest.

We use the spectral properties of the SAR data to justify, and
real SAR data to verify, the proposed POLYPHASE scheme.
The best linear unbiased interpolation (BLUI) scheme in [9]
also uses spectral properties to interpolate between nonuni-
formly oversampled SAR data. However, the type of antenna
and the type of noise present may render BLUI suboptimal
because of the need to estimate the SNR and numerically
evaluate the autocorrelation function of the SAR signal. BLUI
also imposes a minimum aperture length (i.e., antenna size)
and a maximum platform velocity so that enough number of
samples contributes to the interpolation. POLYPHASE simply
mandates a lower bound on the sparseness of the received
SAR data relative to the output grid. It ensures delivery of uni-
formly resampled data, which approximates the spectral prop-
erties of a decimated version of a ‘hidden’ densely sampled
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TABLE I

NOTATION

SAR data sequence that can be considered to have generated
the nonuniformly sampled input SAR data.

Moreover, POLYPHASE works with arbitrary input PRF
variations. Thus, it is applicable in more general scenarios
(e.g., to compensate for flight path deviation, imaging while
in turn, and uncontrolled platform acceleration/deceleration
effects [6]). In contrast, BLUI imposes certain periodicity con-
straints on the input PRF variation to realize its computational
savings. In other words, BLUI caters well to the staggered
SAR scenario [10], but not for arbitrary PRF variations.

Section II provides a summary of the technical background.
Section III provides the main idea, and Sections IV and V
more details, of POLYPHASE. Sections VI and VII illustrate
the application of POLYPHASE and the ensuing results.
Section VIII provides concluding remarks.

II. TECHNICAL BACKGROUND

We use a Cartesian coordinate system with the origin at
the scene center, x-axis along-track and parallel to the SAR
platform velocity vector Vp (m/s), and y-axis along boresight;
z-axis denotes altitude [11]–[14]. Table I shows the notation.

Variable PRFs: While conventional radar system operation
relies on a constant PRF, technological advances now allow for
newer radar modes of operation, e.g., the high-resolution wide-
swath imaging in multichannel SAR allows a shorter revisit
time for frequent global mapping. In wide-swath imaging,
the antenna length limitation that can restrict the achievable
swath width is overcome by a technique based on a single
azimuth channel with the system operating with a contin-
uously varied PRF [15]. This allows arbitrary wide swaths
and distributes the discrete blind ranges according to the

applied PRF span of values. In the end, continuous coverage
is achieved at the cost of partial blockage (i.e., loss of some
pulses for every target). This PRF variation manifests itself
as nonuniform sampling of the slow-time domain along the
synthetic aperture [15], thus requiring additional processing,
e.g., interpolation schemes to resample the signal to a regular
azimuth grid [15].

The advantages offered by high-resolution ultrawide swath
SAR imaging is also exploited in multiple elevation
beam (MEB) SAR based on variable PRF [16], which employs
digital beamforming with a reflector antenna to improve SNR
and suppress range ambiguities. It also employs linear vari-
ation of the pulse repetition interval (PRI) to overcome the
blind range problem of conventional MEB SAR [17].

These new techniques of high-resolution wide-swath
imaging modes [15]–[17] come at the cost of nonuni-
form sampling of the slow-time along-track Doppler phase.
Spatial discrete Fourier transform (FT) processing of such
nonuniformly spaced data can introduce undesirable artifacts
(e.g., smearing, defocusing, and echoing) into the final image
(see Fig. 11).

III. PROPOSED POLYPHASE RESAMPLING SCHEME

While the POLYPHASE scheme applies to both strip and
spotlight mode SAR, concentrating on the latter, the underly-
ing complex-valued signal of interest s(·, ·) is taken as [14]

s(νr , u) = Sp(νr )
∑

n

σne− j2ωr Ds(n). (1)

Here, νr is the rotational frequency (rad/s) (in range),
ωr is the corresponding wave number (rad/m), Sp(νr ) is the
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Fig. 1. Block diagram of the proposed POLYPHASE scheme. The sampling
rate at each stage is shown within square brackets (e.g., [PRFin]).

discrete-time (DT) FT of the transmitted signal p(t) (in range),
σn is the reflectivity of the nth scatterer in the scene, Ds(n) =
((Xn − u)2 + (Yn − Yc)2 + (Zn − Zc)2)1/2, (Xn, Yn, Zn)
are its coordinates, (u, Yc, Zc) are the instantaneous radar
coordinates, and u ∈ [umin, umax] is the along-track platform
position (m). The ground range and altitude coordinates
(Yc, Zc) are taken to be constants.

A. Uniformly Sampled Radar Signal

Let us uniformly sample the radar signal s(νr , u), u ∈
[umin, umax], where umin ≤ u0 ≤ · · · ≤ uK−1 ≤ umax, with a
spatial PRF of PRFin (1/m). For k ∈ 0, K − 1, this yields the
DT signal s′(·) (see Fig. 1), where

s′(k) = s(νr , uk), with uk+1 − uk = 1/PRFin. (2)

In spotlight mode SAR, unambiguous recovery of the cross-
range extent X in at boresight (where β = π/2) requires
that the spatial domain PRF satisfy PRFin = 1/&uin ≥
PRFin,min ≡ (2/λc)&β = (2/λc) (X in/R), where &uin and
R denote along-track sample spacing (m) and slant range,
respectively, &β is the beam sweep angle (rad), and X in =
R&β is the cross-range extent (m) [11], [14]. In spotlight
mode SAR, R&β denotes the maximum cross-range extent
illuminated by the radar beam; in strip mode SAR, it is denoted
by X in = R ψ where ψ is the real aperture beamwidth.

Fig. 2(a) shows Ss ′(ωcr), the frequency response of s′(·)
when PRFin = PRFin,min. In Fig. 2 and onward, we use ω for
ωcr [18], [19].

1) A smaller PRF PRFout < PRFin,min causes aliasing, and
the cross-range extent that can be unambiguously recov-
ered is reduced as Xout = (λc/2) R PRFout < R&β.

2) Uniformly sampling s(·, ·) with a higher PRF
L·PRFout, L∈N+, where L·PRFout ≫ PRFin,min =
(2/λc)&β, yields s(·), where s(n) =
s(νr , u)|u=n/(L·PRFout). Its spectrum Ss(ω) is in Fig. 2(b).

B. Nonuniformly Sampled Radar Signal

The acquired DT signal s′(·) is a potentially nonuniformly
sampled version of s(·, ·). The SAR collection receives s′(·)

whose variable PRF PRFin is assumed to be high enough to
sample the available Doppler support for an illuminated cross-
range extent of R&β with no aliasing.

1) Model: We view s′(k) ↔ Ss ′(ω) as being the uniformly
densely sampled signal s(n) ↔ Ss(ω) but with ‘missing’
samples. Here, ↔ denotes a DT FT pair (in the deterministic
case) or a PSD (power spectral density) pair (in the stochastic
case). Then, with appropriate scaling and grid alignment,
the signal r(n) ↔ Sr (ω) in Fig. 1 can be viewed as a
‘gated’ version of s(n), i.e., r(n) = g(n) s(n), where the
gating function g(n) ↔ Sg(ω) is a realization of an indepen-
dent identically distributed (i.i.d.) Bernoulli random process
with parameter p. Thus, the probabilities of g(n) taking the
values 1 and 0 are given by

Pr(g(n) = 1) = p; Pr(g(n) = 0) = 1 − p ∀ N (3)

respectively. Using Sx (ω) to denote the PSD of the w.s.s.
random process x(!), we get the PSD of g(n) as

Sg(ω) = p(1 − p) + (2πp2)
+∞∑

k=−∞
δD(ω − 2πk). (4)

Since the PSD of r(n) is given by Sr (ω) = (1/2π) (Sg(ω) ∗
Ss(ω)), we get Sr (ω) as a scaled ‘biased’ version of Ss(ω)

Sr (ω) = 1
2π

p(1 − p)

∫

ω
Ss(ω) dω + p2Ss(ω). (5)

2) Spatial Doppler Bandwidth Recovery at Output PRF:
Suppose we are interested in an image signal from which a
cross-range extent of Xout can be recovered with a sampling
rate of PRFout (1/m). As we show in Appendix A, such a
signal, which approximates a downsampled version of s(n)
(which is at the constant PRF L·PRFout), can be generated
from the resampling scheme in Fig. 1 by implementing the
following three operations.

1) Get v(n) by filtering r(n) by a digital filter f (n) ↔ F(z)
with the magnitude response

|F(ω)| = 1, |ω| ≤ γ π/L; |F(ω)| = 0, π/L ≤ |ω|,
(6)

where L ≫ 1.
2) Normalize v(n) by f (n) ∗ g(n) to get v ′(n).
3) L-fold decimate v ′(n) to get y(n).
Then, if p ≫ ρ/(L + ρ), where ρ = PRFin/PRFout ≥ 1,

the PSD of the output y(n) approximates the PSD of an L-fold
decimated version of the uniformly densely sampled signal
s(n) within the frequency band [0, γ π]. Thus, to recover a
spatial Doppler bandwidth of PBW (Hz) corresponding to
Nsave bins, we must have γ = Nsave/NFFT (or equivalently,
γ = PBW/PRFout). Note that Nsave is the number of bins
guaranteed to be retained in the final image without distortion.

IV. OUTPUT GRID SPACING DESIGN

Here we select the slow-time output grid spacing &uout (m)
so that it conforms to a given spatial PRF PRFout, preserves
the resolution in the image domain, and avoids aliasing in
both spatial slow-time and image domains. The output grid
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Fig. 2. Spatial Doppler bandwidths. (a) Dotted line is s′(k) at a PRF of PRFin = PRFin,min = (2/λc)&β (1/m) and solid line is s(n) at a PRF of L·PRFout
(1/m). (b) r(k) at a PRF of L·PRFout (1/m). (c) v(k) at a PRF of L·PRFout (1/m). (d) y(k) at a PRF of PRFout (1/m). The digital filter F(z) has its passband
and stopband edges at γπ/L , γ < 1, and π/L , respectively, ρ = PRFin/PRFout ≥ 1, Nsave denotes the number of bins guaranteed to be retained in the final
image without distortion, and γ = Nsave/NFFT = PBW/PRFout < 1. Spatial frequency value (with respect to the PRF PRFout) and frequency bin axes are
also shown underneath (c) and (d).

spacing &uout/L is then used to view the raw data s′(k)
(at the variable PRF PRFin) as being embedded in a uniformly
densely sampled signal r(n) (at the constant PRF L·PRFout).

A. Design Steps

1) FFT Size: Following common practice, we first select the
azimuth compression FFT size NFFT to meet the read access
memory and SAR processor power/speed limitations.

2) Synthetic Aperture: Note that NFFT is the next power-
of-two FFT size obtained from ND , the number of points
necessary to represent the synthetic aperture with no aliasing.
Then, the slow-time spectrum oversampling factor is

pd = Kcr (NFFT&uout)/(ND&uout) = Kcr NFFT/ND (7)

where Kcr compensates for broadening due to aperture
weighting [13]. Note that ND&uout and NFFT&uout denote
the slow-time acquisition intervals D and Dpad generated
by ND and NFFT, respectively. Thus, Kcr ≤ pd because
ND ≤ NFFT. We used pd = 1.5 to generate adequate over-
sampling for a visually more pleasing image and to facilitate
application of certain image processing procedures. Then (7)
yields ND .

Filtering by the order Npr prototype Hpr(z) (see
Section V-A) requires Npr number of samples to be appended
to the ND number of points laid out along the synthetic
aperture. This yields a total of NX AC = ND + Npr number
of points.

3) Slow-Time Output Grid Spacing and Output: We match
range and azimuth resolutions to get square radar reso-
lution cells in the oversampled image domain. Equating
the range and azimuth resolution expressions in spotlight
mode SAR δr = (c/2) (Kr/Bchirp) and δcr = (λc/2)
(Kcr/&β) [11]–[13], we get the SAR integration angle

&β = (λc Bchirp/c) (Kcr/Kr ), which yields the required syn-
thetic aperture length D [14]. The slow-time output grid
spacing &uout and the corresponding spatial sampling fre-
quency PRFout of the resampled data are then given by
&uout = D/ND so that PRFout = 1/&uout.

4) Cross-Range Extent: With Xout = (λc/2) R PRFout, and
for the selected FFT size NFFT, we are attempting to fit
as much cross-range extent Xout as possible so that PRF
conversion is more efficient: it is more parallel processing
friendly, and aid the SAR processor to partition the image
into smaller patches of cross-range extent allowing smaller
FFT sizes to be run faster on parallel nodes.

B. Grid Alignment

1) Scaling: We use s(νr ,α) = s(νr , u)|u=-−1(α), where
α = -(u) = (u − umid)/&uout + (ND + 1)/2, to lin-
early transform the input to the output spatial grid. Here,
u ∈ [umin, umax], &uout = (umax−umin)/NX AC is the output
spacing along-track, and ND = NX AC − Npr is the number
of output points along the acquisition interval D. With αk =
-(uk), k ∈ 0, K , this transforms the sequence s′(·) to the
sequence s′′(·), where s′′(k) ≡ s(νr ,αk) = s(νr , uk) ≡ s′(k).

2) Grid Alignment: Next we align s′′(·) onto a dense grid
corresponding to the rate L·PRFout to create r(·), where

r(n) = s′′(αk), for n = ⌊L · αk⌋ (8)

and r(n) = 0 otherwise. Here, ⌊x/L⌋ = (x − (x)L)/L, where
(x)L denotes the remainder when x and L are the dividend
and divisor, respectively. Each sampled value in s′′(k) is now
aligned to a grid point within the densely sampled grid with
rate L·PRFout. The remaining grid points (i.e., the ‘missing’
samples) have value 0. Thus, r(·) can be viewed as a ‘gated’
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version of s(·), where only some samples of s(·) appear in
r(·) (see Section III-B and Appendix A).

V. FILTER DESIGN AND IMPLEMENTATION

A flexible SAR focusing processor (i.e., TerraSAR-X) must
accommodate a wide range of integer and noninteger resample
ratios (which can vary with radar collection parameters, geom-
etry, processed image resolution and scene size, FFT size, etc.).
Thus, POLYPHASE’s narrowband digital filter [see (6)] must
be flexible enough to handle a large range of resampling
ratios and it must be efficiently implemented. A polyphase
implementation architecture, a critical component in multirate
digital systems [19], addresses both these issues.

A. Filter Design

Step 1 Prototype Filter: Use a standard finite impulse
response (FIR) filter design technique (see [18]) to design a

‘prototype’ Fpr(z) = ∑Npr
m=0 fpr(m) z−m with passband and

stopband edge frequencies ‘stretched’ L-times as those in (6)

Fpr(ω) = 1, ω ∈ [0, γ π]; Fpr(ω) = 0, ω = π. (9)

We choose a Type-II FIR filter design (with symmetric filter
taps and odd filter order Npr). One may also use a Type-I FIR
filter (with symmetric filter taps and even filter order).

Step 2 Shaping Filter: As is typical in interpolated FIR
(IFIR) filter design [20], [21], generate an L-fold upsampled
version of fpr(n) to get the ‘shaping’ filter

fbe(n) =
{

fpr(n/L), for n = 0, L, . . . , Npr L
0, otherwise

(10)

so that Fbe(z) = Fpr(zL). This Npr L-order filter’s frequency
response is the desired response in (6), except that spectral
‘images’ of this desired response now appear within the
Nyquist interval. The filter order Npr L enables a polyphase
design consisting of L subfilters [18].

Step 3 Image Suppression: IFIR designs require a ‘masking’
filter to suppress these extra images [21]. But, this increases
the length of our overall impulse response (IPR) and the
filter order beyond Npr L. Thus, we employ a direct least
squared integral error (LSIE) FIR design [22], [23] to design
an Npr L-order filter to approximate Fbe(ω) in the frequency
interval [0,π/L]. Then, the ‘ideal’ frequency response to be
approximated is Fid(ω) = Fbe(ω) FLPF(ω), where

FLPF(ω) = 1, |ω| ≤ π/L; FLPF(ω) = 0, otherwise. (11)

Note that FLPF(ω) ↔ fLPF(n) = (1/L) sinc(πn/L) and
fid(n) = fbe(n) ∗ fLPF(n). Thus

fid(n) = 1
L

Npr∑

m=0

fpr(m) sinc
(
(n − mL)

π

L

)
(12)

and the filter with support in [0, Npr L] that minimizes the
LSIE with Fid(ω) is [22], [23]

f (n) = 1
L

Npr∑

m=0

fpr(m) sinc
(
(n − mL)

π

L

)
. (13)

Fig. 3. Efficient polyphase implementation of the filter F(z). The structure
in (b) allows the digital filtering operations in (a) to be carried out at
the lowest sampling rate. (a) Polyphase representation of F(z). (b) Efficient
implementation of (a).

B. Polyphase Filter Implementation

Consider the L-fold polyphase representation of F(z) [18]

F(z) =
L−1∑

ℓ=0

z−ℓFℓ(zL), with Fℓ(z) =
Npr∑

n=0

fℓ(n) z−n . (14)

Here, fℓ(n) = f (nL + ℓ) [see Fig. 3(a)]. Note that F0(z)
is of order Npr and Fℓ(z), ℓ ∈ 1, L − 1, is of order
Npr − 1.

To create the final output y(n), we normalize the filtered
output v(n) to get v ′(n) = v(n)/( f (n) ∗ g(n))|nL , and
L-fold downsample v ′(n) [see Figs. 1 and 3(a)]. As is
well known [19], the alternate implementation of the struc-
ture in Fig. 3(a) that appears in Fig. 3(b) allows the fil-
tering operations to be performed at the lowest sampling
rate.

1) Normalization: In Fig. 3(a), the normalized output
v ′(n) must be downsampled to produce the required out-
put y(n). In the more efficient implementation of Fig. 3(b),
normalization immediately produces y(n). This ‘normalized’
convolution may be interpreted as associating a level of
‘confidence’ with the received signal [24]–[26]. For exam-
ple, each missing sample is associated with zero confidence.
Accordingly, f (n) ∗ g(n), where the gating function g(n)
(see Section III-B) captures the confidence associated with the
received signal r(·). The normalization factor ( f (n) ∗ g(n))|nL
is computed by maintaining a separate buffer, which accu-
mulates the sum of the coefficients used at each output
location.
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Fig. 4. Implementation of POLYPHASE with Npr = 5 and L = 3 (see Figs. 1 and 3). The only polyphase component that operates on the input sample
r(ℓ∗) = r(8) is f1(n) ↔ F1(z) that is of order Npr − 1 = 4 and has Npr = 5 taps. The filtered outputs f1(n − 3) r(ℓ∗), n ∈ 3, 7, are used to update the
output sample y(n).

2) Generating the Output: With npr = n − Npr, the output
y(n) = y ′(n)/( f (n) ∗ g(n))|nL can be expressed as

y ′(n) = f0(Npr) r(npr L)

+
n∑

m=npr+1

mL∑

ℓ=mL−(L−1)

fmL−ℓ(n − m) r(ℓ). (15)

Thus, computation of one output sample y ′(n) requires
all nonzero input samples r(ℓ) such that (n − Npr)L ≤
ℓ ≤ nL. Conversely, the single nonzero input sample r(ℓ)
affects the computation of all output samples y(n) such that
ℓ ≤ nL ≤ ℓ+ Npr L

y(n) s.t.
⌊
ℓ− 1

L

⌋
+ 1 ≤ n ≤

⌊
ℓ

L

⌋
+ Npr . (16)

Note that, with the polyphase implementation, a given
nonzero input sample r(ℓ∗) such that (n − Npr)L ≤ ℓ∗ ≤ nL
is operated on by only one polyphase component fx (!), where
x = m∗L − ℓ∗ with m∗ = ⌊(ℓ∗ − 1)/L⌋ + 1 (see Claim 2
in Appendix B).

3) Summary: We use Fig. 4 to explain the above operations.
1) Black circles denote s′(·) [see (2)].
2) Gray circles denote s(·), the signal that is densely uni-

formly sampled at a rate of L PRFin (see Section III-A).
Note that s(·) is unavailable, and the input s′(·) is
viewed as being generated from s(·), but with a high
(approximately 1− p) fraction of s(·)’s samples missing
[see (3)].

3) Black circles denote r(·), which is the input s′(·) aligned
to the same ‘sampling grid’ as s(·) [see (8)]. To explain,
let Npr = 5 and L = 3 (our actual implementation
uses L = 64). Thus, the order of the narrowband
digital filter F(z) is Npr L = 15 and it has L = 3

Fig. 5. Proposed POLYPHASE scheme’s role within the image formation
process.

polyphase components {F0(z), F1(z), F2(z)}: F0(z) is
of order Npr = 5; F1(z) and F2(z) are each of order
Npr − 1 = 4 [see (6), (9), and (14)].

4) Ringed black circle identifies one nonzero input sample
r(ℓ∗), ℓ∗ = 8. With L = 3, the range of ℓ in the second
summation in (15) is 3m ≤ ℓ ≤ 3m − 2. In this range,
ℓ = ℓ∗ = 8 occurs only when m∗ = 3. In turn, from the
first summation in (15), the only values of n that would
require r(ℓ∗) = r(8) must satisfy 3 ≤ n ≤ 7 [see (16)].
Thus, when the input sample r(ℓ∗) = r(8) is received,
we must update the output samples y ′(n), 3 ≤ n ≤ 7,
by f3m∗−ℓ∗(n − m∗) r(ℓ∗) = f1(n − 3) r(8).

5) ℓ∗ = 8 implies m∗ = 3. Thus, only f3m∗−ℓ∗(·) =
f1(·) polyphase component is activated (Claim 2 in
Appendix B). Black circles indicate the Npr = 5 taps of
the filter f1(n) ↔ F1(z). The gray arrows show output
samples being updated by these taps operating on r(ℓ∗).

6) Black circles denote y(·), 3 ≤ n ≤ 7, the output samples
that get updated with the input sample r(ℓ∗) = r(8).
This updating is carried out ‘on-the-fly’ with no input
buffering.
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Fig. 6. One period of the PRI variations. Each variation has mean PRI PRImean = 0.385 ms, minimum range of swath R0min = 837 km, maximum range
of swath R0max = 1047 km, and pulsewidth 15 µs [9]. (a) Slow PRI variation with PRImax = 0.395 ms, PRImin = 0.375 ms, and period 580 m. (b) Fast
PRI variation with PRImax = 0.421 ms, PRImin = 0.349 ms, and period 34 m. (c) Elaborate PRI variation with PRImax = 0.461 ms, PRImin = 0.309 ms,
and period 268 m.

Fig. 7. Scenario I (scatterers at {0, ± 17} km): comparison of BLUI and POLYPHASE using the azimuth IPRs corresponding to the three different PRI
variations in Fig. 6. Each IPR is depicted over 400 m and 40 km azimuth scales. The underlying black curves represent the reference IPR of a SAR system
with a constant PRI equal to the mean PRI PRImean = 0.385 ms. (a) BLUI with slow PRI variation. (b) POLYPHASE with slow PRI variation. (c) BLUI
with fast PRI variation. (d) POLYPHASE with fast PRI variation. (e) BLUI with elaborate PRI variation. (f) POLYPHASE with elaborate PRI variation.

7) Gray circles denote the full set of output samples that
need to be computed. Its PSD approximates the PSD of
an L-fold decimated (L = 3) version of s(n) within the
frequency band [0, γ π] (Claim 1 in Appendix A).

Fig. 5 shows where the proposed scheme belongs within the
image formation process.

VI. RESULTS

A. Synthetic Data

To see how the azimuth IPR is affected by the different
PRI variations in [9], namely, the slow, the fast, and the
elaborate PRI variations in Fig. 6, two different scenarios, each
containing three scatterers and covering a total unambiguous
azimuth extent of 40 km, are considered. We used a slant range
of R = 1000 km, an orbit height of 760 km, a wavelength of

λ = 0.2384 m (L-band), and a planar antenna of length of 7 m.
The azimuth processed bandwidth is set to PBW = 800 Hz.
In addition, an azimuth Hamming window (α = 0.6) and a
window which compensates for the azimuth antenna pattern
are employed to arrive at an azimuth resolution of 7 m. The
output PRI for all simulations is PRIout = 0.417 ms.

1) Scenario I With Scatterers at {0, ± 17} km: Fig. 7 shows
the azimuth IPRs generated by BLUI and POLYPHASE for
the three periodic PRI variations in Fig. 6 with scatterers
at {0, ± 17} km. The underlying black curves represent the
reference IPR of a SAR system with a constant PRI equal to
the mean PRI PRImean = 0.385 ms.

2) Scenario II With Scatterers at {0, ± 175} m: Fig. 8 shows
the azimuth IPRs generated by BLUI and POLYPHASE for
the three periodic PRI variations in Fig. 6 with scatterers
at {0, ± 175} m. The underlying black curves represent the



5748 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 55, NO. 10, OCTOBER 2017

Fig. 8. Scenario II (scatterers at {0, ± 175} m): comparison of BLUI and POLYPHASE using the azimuth IPRs corresponding to the three different PRI
variations in Fig. 6. Each IPR is depicted over 400 m and 40 km azimuth scales. The underlying black curves represent the reference IPR of a SAR system
with a constant PRI equal to the mean PRI PRImean = 0.385 ms. (a) BLUI with slow PRI variation. (b) POLYPHASE with slow PRI variation. (c) BLUI
with fast PRI variation. (d) POLYPHASE with fast PRI variation. (e) BLUI with elaborate PRI variation. (f) POLYPHASE with elaborate PRI variation.

TABLE II

ISLR AND PSLR FOR THE IPRs IN FIGS. 7 AND 8
FOR SCENARIOS I AND II

reference IPR of a SAR system with a constant PRI equal to
the mean PRI PRImean = 0.385 ms.

These, and Table II that compares the two schemes relative
to the response of a constant PRI, show that POLYPHASE
achieves nearly perfect reconstruction.

B. Real Data

1) Data Sets: We employ data set A and data set B
that had been acquired with stretch waveforms (using the
“deramp-on-receive” technique) in SAR’s spotlight mode, with
the PRI slaved to a primary mode possessing the nonuni-
form PRI variations in Fig. 9(a) and (b), respectively. The
acquisition and processing parameters are in Table III. The
azimuth processed bandwidth is set to PBW ≈ (2/3)PRFout
[i.e., Nsave = (2/3) NFFT]. An azimuth Taylor window (with
n̄ = 6 and sidelobe = −35 dB) was used to get an azimuth
resolution of 0.75 m per resolution cell [12]. The azimuth
antenna pattern was not compensated for because the antenna
pattern as seen by a target is constant in spotlight mode [27].

2) Results: Fig. 10(a) shows the frequency responses of
the high-order narrowband digital filter F(z) [in (6)] and the

Fig. 9. Periodic PRI sequences associated with data set A and data
set B. The pulsewidth is 66.7 µs. (a) Data set A: PRImean = 1.984 ms,
PRImax = 2.098 ms, PRImin = 1.562 ms, and R0 = 135 km. (b) Data
set B: PRImean = 1.637 ms, PRImax = 2.083 ms, PRImin = 1.550 ms, and
R0 = 118 km.

TABLE III

ACQUISITION AND PROCESSING PARAMETERS
CORRESPONDING TO DATA SETS A AND B

shaping filter Fbe(z) [in (10)]; Fig. 10(b) shows the low-order
subfilter F0(z) [in (14)].

Fig. 11 shows the results. Fig. 11(a) and (c) refers to data
set A: Fig. 11(a) shows the image formed with the spatial
FT taken on data nonuniformly sampled along-track, i.e., the
resampler block in Fig. 5 is absent; Fig. 11(c) shows the
image formed after taking the discrete spatial FT on data that
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Fig. 10. Digital filter frequency responses. (a) Narrowband digital fil-
ter F(z) [in (6)] and the shaping filter Fbe(z) [in (10)] both of order
Npr L = (5)(64) = 320. (b) Polyphase subfilter F0(z) [in (14)] of order
Npr = 5.

Fig. 11. Application of POLYPHASE to data sets A and B.
(a) Data set A: nonuniformly sampled along-track formed image. (b) Data
set B: nonuniformly sampled along-track formed image. (c) Data set A: uni-
formly resampled along-track formed and passband cropped image.
(d) Data set B: uniformly resampled along-track formed and passband cropped
image.

TABLE IV

PERFORMANCE COMPARISON OF BLUI AND POLYPHASE

have undergone the resampling system in the spatial slow-
time domain, i.e., the resampler block in Fig. 5 is operational.
Similarly, Fig. 11(b) and (d) refers to data set B: Fig. 11(b)
shows the image formed with the spatial FT taken on data
nonuniformly sampled along-track; Fig. 11(d) shows the image
formed after taking the discrete spatial FT on data that have
undergone the resampling system in the spatial slow-time
domain. In Fig. 11(c) and (d), images have been cropped in
azimuth to the processing bandwidth PBW = (2/3) PRFout
[or, Nsave = (2/3) NFFT pixels].

Table IV compares the integrated side lobe ratio (ISLR)
and peak side lobe ratio (PSLR) measurements (relative to the
original nonuniformly sampled data).

3) Resolution Improvement: To quantify the improvement
in resolution offered by POLYPHASE, we used IPR to mea-
sure how resolvable point scatterers are in azimuth [28].

In particular, we employed a quadratic fit of the log magnitude
of pixels adjacent to the peak of the main lobe response
of point scatterers, and then recorded the −3 dB width as
an indication of resolution. Table IV indicates the average
improvement corresponding to eight point scatterers.

VII. DISCUSSION

A. Computational Complexity
As commonly practiced, we used the number of flops

(i.e., the number of real additions and multiplica-
tions) [29], [30] to compare the computational burdens.
Note that BLUI is output-based (i.e., it takes in a vector of
input samples to compute an output sample); POLYPHASE
is input-based (i.e., it takes an input sample and updates a
vector of output samples).

POLYPHASE. Each complex-valued input sample
r(n) ∈ C goes through Npr real-valued taps of one polyphase
component to update Npr output samples (see Fig. 4),
entailing 4Npr flops (2Npr real multiplications and additions
each). An ND -length output vector (to represent D) needs
about PRIout/mean[PRIin] · ND input samples. Thus, each
output sample requires about 4NprPRIout/mean[PRIin] (flops).

BLUI. Here, nonuniformly sampled input SAR data are
interpolated, Doppler filtered, and then decimated to produce
the uniformly sampled output signal y(·) [9], [10], [31].

Interpolation Stage. To compute the interpolated sample
r(n), BLUI uses Q nonuniformly sampled input samples of
s′(·) located at Qn ≡ {n1, . . . , nQ} and falling within the
interval [−LRA,+LRA] on either side of n. Here, LRA is the
real aperture length, Vp (m/s) is the platform velocity, and
Q = ⌊(2 LRA/PRIinVp)⌋. The interpolated value is r(n) =
b(Q+

n )T ŝ′(Qn). Here, ŝ′(Qn) = [s′(n1), . . . , s′(nQ)]T ∈
CQ×1 is the input data value ‘segment’ and b(Q+

n ) =
G(Qn)−1ϱϱϱ(Q+

n ) ∈ RQ×1, where G(Qn) ∈ RQ×Q is a
symmetric matrix (with equal diagonal entries) and ϱϱϱ(Q+

n ) ∈
RQ×1 is a function of both n and Q(n), i.e., Q+

n = {n,Q(n)}.
Filtering and Decimation Stages. Interpolated data r(·)

are Doppler filtered using a NBLUI-tap filter with NBLUI =
25 or 17. A nine-tap low-order Capon beamformer pro-
vides acceptable passband, but introduces significant pass-
band attenuation requiring additional compensation during
processing [31].

Joint BLUI. To avoid the heavy a computational burden
imposed by the above three-stage implementation, a joint
BLUI scheme wherein the matrix operations are carried out
on-ground and the three stages are jointly conducted on-board
is suggested in [9] and [10], without further details of such a
scheme.

To compare the computational complexities, we now
develop this joint BLUI scheme. Note that r(·) is first sent
through an order-NBLUI digital filter with coefficient vector
h = [h0, . . . , hNBLUI ]T and then decimated by LBLUI to get

y(n) =
NBLUI∑

k=0

hk r(n′ − k) =
NBLUI∑

k=0

hk b
(
Q+

n′−k

)T ŝ′(Qn′−k)

(17)

where, for notational convenience, we use n′ = nLBLUI.
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1) Arbitrary Input PRF Variation: Entries of ŝ′(·), G(·), ϱϱϱ(·),
and hence b(·) are functions of Qn and the location n. Thus,
one must freshly generate G(Qn′), ϱϱϱ(Q+

n′), and b(Q+
n′) on-

ground, and uplink the latter, for each n. Regarding on-ground
computations, ϱϱϱ(Q+

n′) and G(Qn′) require FR Q (flops) and
FR (Q2 − Q + 2)/2 (flops), respectively, where FR is the
flop count for computing each entry of the input azimuth
signal’s autocorrelation function Ru(ξ) [9]; and b(Q+

n′) =
G(n)−1ϱϱϱ(n) requires 2Q3/3 + 3Q2/2 − 7Q/6 (flops) with
Gaussian elimination (and backward substitution) [29], [32].
Regarding on-board computing of y(n), computing r(n′ − k),
multiplying by hk , and then adding the NBLUI+1 terms in (17)
require 4Q(NBLUI + 1) − 1 (flops).

The flop counts for the synthetic data cases in [9] (the fast
PRI case is identical to the slow PRI case) appear in Table V.
Clearly, the POLYPHASE offers a significant computational
advantage.

2) Periodic Input PRF Variation: Suppose, as in staggered
SAR, the input PRI sequence repeats every TPRI (s), or every
NPRI samples. Then, suppose an integer number R of
(predecimation) output samples ‘fit’ within TPRI (s), i.e.,
R ≡ LBLUITPRI/PRIout ∈ N+. Then, BLUI could be made
computationally very efficient because Qn , and therefore
G(Qn)−1, ϱϱϱ(Q+

n ), and b(Q+
n ), also repeat every R samples.

In staggered SAR [10], TPRI = NPRImean[PRIin] so that

R = LBLUI NPRImean[PRIin]/PRIout ∈ N+. (18)

The work [10] in fact satisfies (18) with LBLUI = 3 and
{mean[PRIin], PRIout} = {0.37037, 1.11111}. But, this is not
true with the input PRI variations in Fig. 6 when the para-
meters in [9] are used. To exploit joint BLUI’s computational
advantage, one may select, for example, PRIout = 0.770 (ms)
(instead of PRIout = 0.417 ms used in [9]).

When (18) is satisfied, instead of (17), we may use

y(n) =
NBLUI∑

k=0

hk b
(
Q+

n′−k

)T
R ŝ′(Qn′−k) (19)

where (·)R denotes the modulo-R operation. Thus, the entries
of b(·) are reusable and only R of its samples need be
computed.

Moreover, an overlap between consecutive segments
ŝ′(Qn′−k) and ŝ′(Qn′−k+1) leads to further computational
reduction. For example, suppose the first entry of the segment
ŝ′(Qn′−NBLUI ) is s′(1) and only 1 samples (where 1 ≤ 1 ≤ Q)
are ‘new’ between consecutive segments. In fact, an approxi-
mate expression for 1 is

1 ≈ min{⌈PRIout/LBLUImean[PRIin]⌉, Q}. (20)

Then, one can show that only NBLUI1 + Q samples of the
nonuniformly sampled signal s′(·) are needed to compute one
output sample. This allows (19) to be expressed as

y(n) =
NBLUI1+Q∑

m=1

cm s′(m) (21)

for appropriately chosen coefficients cm . Assuming the coef-
ficients are computed on-ground and uploaded, each output
sample would require about 4(NBLUI1 + Q) − 2 (flops).

When input PRF variation is periodic and (18) holds true,
Table V compares the flop counts of the two schemes. BLUI
shows a significant improvement when compared with its
arbitrary case. However, for the fast PRI and elaborate PRI
sequences, POLYPHASE still offers a significant computa-
tional advantage in on-board flops; for the staggered system
in [10], on-board flop counts are comparable. What must be
emphasized here is that POLYPHASE applies to arbitrary PRI
variations. Moreover, it requires neither uplinking/downlinking
nor on-ground computation of intermediate variables. The
computation of Ru(ξ) may require numerical schemes [9],
which may further exacerbate the BLUI’s on-ground effort.
Moreover, since Ru(ξ) = 0, ∀|ξ | ≥ LRA/Vp [9], BLUI man-
dates a lower bound on the minimum real aperture length LRA.
POLYPHASE makes no such demands.

B. Computational Considerations

1) Convolution Computation: In our implementation of
POLYPHASE, we reindex y ′(n) to work with ỹ ′(n) = y ′

(n+(Npr +1)/2), because the associated inequalities are more
symmetric, e.g., corresponding to (16), we get

⌊
ℓ− 1

L

⌋
−

(
Npr − 1

2

)
≤ n ≤

⌊
ℓ

L

⌋
+

(
Npr − 1

2

)
. (22)

The output vectors ỹ′(N1:N2) = [ỹ ′(N1), . . . , ỹ ′(N2)]T are
simultaneously and efficiently computed via an input-centered
convolution scheme [12] (see Algorithm 1).

Algorithm 1 Input-Centered Convolution Algorithm

Initialize: ỹ′(N1:N2) = 0;
for r(ℓ) ̸= 0, s.t. ℓ ∈ N satisfies (23), do

m = ⌊(ℓ− 1)/L⌋ + 1;
for n ∈ N, s.t. n satisfies (22), do

ỹ ′(n) = ỹ ′(n) + fmL−ℓ(n + (Npr + 1)/2 − m) r(ℓ);
end for

end for

Note that the computation of ỹ′(N1:N2) requires all the
nonzero input samples r(ℓ) ̸= 0, ℓ ∈ N, such that

(
N1 − Npr − 1

2

)
L ≤ ℓ ≤

(
N2 + Npr + 1

2

)
L . (23)

The output ỹ′(N1:N2) from Algorithm 1 yields y′(N1 +(Npr +
1)/2:N2 + (Npr + 1)/2). Grid alignment (see Section IV-B)
can be incorporated directly into this computation instead of
accounting for it earlier. Indeed, the computation is carried out
‘on-the-fly’ with no need to buffer the input signal pulses: the
implementation waits for a new nonzero signal pulse s′(k) =
s(νr ,αk), generates r(n) in (8), and invokes Algorithm 1.

2) Buffer Memory: The implementation occurs in-place
requiring a buffer of size ND complex floats to store the
output, a buffer of (Npr L + 1) real floats to store the filter
coefficients, and one complex float to store the current input
temporarily for processing (and later overwrite it with the
next input).

Since ND = (NFFT/pd) Kcr [see (7)], the parameters
NFFT, pd , and/or Kcr can be used to significantly lower the
number of output pulses. However, lowering the FFT size
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TABLE V

NUMBER OF FLOPS REQUIRED TO COMPUTE (ON A Per-Output BASIS)

narrows the unambiguously sampled cross-range extent being
imaged; lowering Kcr broadens the resolution; and increasing
pd increases the spectrum oversampling factor.

3) Real-Time Application: POLYPHASE executes in real
time, i.e., it processes the input pulses one-by-one as they are
received with no delay. It handles input pulses even if they
are received out of order (assuming they are spatially correctly
stamped of course). BLUI does not possess this feature.

4) Data Uplink/Downlink: With its significantly lower com-
putational burden, all processing in POLYPHASE can be
performed on-board with no need for on-ground compu-
tations or uplinking/downlinking of intermediate variables.
These translate into lower transmit power (an important
consideration when using drones or other UAVs), cheaper
and lighter communication systems with smaller channel
capacities, and faster data transfers with reduced need for
retransmission [33].

5) Error Analysis: Considering the floor operation associ-
ated with the grid alignment process in (8), we may upper
bound the error in sample realignment by

&uerror ≤ &uout

L
= 1

L
D

ND
= D

L
pd

NFFT

1
Kcr

. (24)

Thus, &uerror can be significantly reduced using larger NFFT,
which increases the computational load in SAR processing,
or larger L, which calls for a larger number of subfilters. But
POLYPHASE’s computational load remains unaltered because
it is a function of Npr (and not L). Of course, a larger L may
produce a better interpolation and hence a better output.

C. Other Design Considerations

1) FFT Size: While it is common to select the FFT size for
azimuth compression to accommodate a required cross-range
extent, we employed a different strategy: we first selected an
FFT size NFFT that can be comfortably implemented with
the given system resources and used the cross-range extent
Xout, which can be accommodated with this NFFT value

(see Section IV). This strategy allows one to partition an image
into smaller patches and still operate on the same FFT size.

2) Prototype Digital Filter: Given the cross-range extent
associated with the selected FFT size, the FIR prototype
filter was designed to pass only a portion (we used γ =
Nsave/NFFT = PBW/PRFout = 2/3) of the spectrum
(see Fig. 2). This was necessary to arrive at a low-order filter
design.

3) Type of Digital Filter: An FIR digital filter of low order
(Npr = 5) was adequate for our purposes. In addition to
the absence of stability issues, the FIR design allowed us
to compute only every Lth output sample that is affected
by an incoming input sample. This property was critical for
implementing the downsampling portion of our system.

4) Oversampling of Final Image: Oversampling the final
image generated a final image that was more pleasing to the
eyes. We used an oversampling factor of pd = 1.5 to describe
each square radar resolution cell of δr × δcr.

5) Missing Samples Case: To compare the performance
when additional samples are missing (due to simulta-
neous Tx/Rx events) in staggered SAR, we randomly
removed 10% of the samples from each PRI sequence in Fig. 6
(see Table VI).

1) ISLR: POLYPHASE consistently outperforms the BLUI
by at least 1.5 dB when samples are missing; the
performance difference is much closer when samples are
not missing.

2) PSLR: BLUI was better with the elaborate PRI sequence.
6) Other Benefits: One potential use of POLYPHASE is

to account for different PRFs across different acquisitions
in repeat-pass InSAR, a challenge that has been identified
in the spotlight (SL), high-resolution spotlight (HS), and the
recent staring spotlight SAR modes of TerraSAR-X. These
modes may not be able to collect data from the same scene
at the same PRF [36], which poses a significant challenge in
interferometry. POLYPHASE can be employed to unify the
different PRFs across different SLCs, so that interferometry
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TABLE VI

COMPARISON WHEN 10% OF SAMPLES ARE MISSING

Fig. 12. Georeferenced interferograms of TerraSAR-X HS mode formed
with SLCs. The phase has been wrapped to be within [−π,+π ]. (a) Different
PRFs {8300; 8200}. (b) Same PRFs {8300; 8300}.

can be applied with equivalent spectrum widths. Fig. 12(a)
shows the effect of this phenomenon on real data from
TerraSAR-X spotlight interferometry; Fig. 12(b) shows the
absence of this effect when the same PRF is used.

The popular solution to unify different SLCs to a common
grid space and Doppler spectrum width is to undertake coreg-
istration in two steps.

1) Resample the slave image in the image domain to
the geometry of the master image information and
low-resolution digital elevation model.

2) Estimate the residual shifts in range and azimuth within
subpixel accuracy via point-like scatterers that are com-
mon to both images [37]. The success of this strategy
depends on a high persistence of the scatterers. Step
2 becomes more challenging at higher resolutions when
cells smaller than 1 m are needed for subpixel accuracy.
POLYPHASE resolves this issue directly without the
need for such meticulous coregistration techniques.

More importantly, POLYPHASE can be used when the PRI
sequence may not be periodic and the effects of nonuniform
sampling across the aperture have to be compensated for,
e.g., missing data, flight path deviation, imaging while in
turn, and acceleration and deceleration. A case in point is
dual-aperture SAR processing. Traditionally, coherent change
detection (CCD) and ground moving target indicator (GMTI)
algorithms, both of which are based on dual-aperture SAR
processing algorithms, remove clutter by subtracting the SAR
images formed within each aperture [38]. If the sampling rates
are not uniform across apertures, the performance of clutter
cancellation algorithms can be significantly diminished [39].
POLYPHASE offers an effective solution because it does not
assume any periodicity condition on the PRI sequence.

VIII. CONCLUSION

POLYPHASE is a computationally efficient method for
resampling along-track oversampled SAR data in slow-time

domain for a radar that operates at variable PRFs. We provide
a lower bound on the sparseness of the received SAR data
relative to the output grid, which ensures that the uniformly
resampled data approximate the spectral properties of a dec-
imated version of a certain hidden densely sampled SAR
data sequence. In essence, we view the nonuniformly spaced
received samples as a subset of samples of a uniformly densely
sampled underlying signal. A low-pass filter, implemented via
its polyphase components, generates the missing sample val-
ues. Only the portion of interest from the spectrum is extracted
in the frequency domain after taking the spatial azimuth
compression FFT. The order of each polyphase subfilter and
the polyphase implementation are critical factors affecting the
computational complexity of the algorithm.

When compared with BLUI in [9], POLYPHASE provides
significant savings in computational cost without sacrificing
performance. It can be implemented in real time and com-
pletely on-board with no downlinking of intermediate vari-
ables for on-ground computations. It can even accommodate
out-of-order input samples. POLYPHASE can also be useful in
other application scenarios, e.g., it can be employed to unify
PRFs across a sequence of repeat-pass acquisitions taken at
different PRFs in TerraSAR-X spotlight mode data and to
improve clutter cancellation in CCD and GMTI.

APPENDIX A
ANALYTICAL BASIS OF THE RESAMPLING SCHEME

As argued in Sections III-B and IV-B, we model the signal
r(n) in Fig. 1 as r(n) = g(n) s(n). Here, the gating function
g(n) is a realization of the i.i.d. Bernoulli random process with
parameter p in (3). Thus, r(n) = s(n) whenever g(n) = 1, and
r(n) = 0 [i.e., r(n) is ‘missing’ a sample of s(n)] otherwise.
The mean of the w.s.s. random process g(·) is µg = p,
∀n ∈ N; its autocorrelation Cg(n) = p(1 − p) δ(n) + p2 and
PSD Sg(ω) form a DT FT pair so that

Sg(ω) = p(1 − p) + (2πp2)
+∞∑

k=−∞
δD(ω − 2πk). (25)

With f (n) being the IPR of the digital filter F(z), we have

r(n) = g(n) s(n); v(n) = f (n) ∗ r(n)

v(n) = ( f (n) ∗ g(n)) v ′(n). (26)

Note that f (n) ↔ F(ω). Thus

y(n) = v ′(nL) = ( f (n) ∗ r(n))/( f (n) ∗ g(n))|n→nL . (27)

In terms of PSDs, we can express (26) as

Sr (ω) = 1
2π

(Sg(ω) ∗ Ss(ω)); Sv (ω) = |F(ω)|2Sr (ω). (28)

The normalization step in (26) and (27) can be expressed as

Sv (ω) = 1
2π

((|F(ω)|2Sg(ω)) ∗ Sv ′(ω))

Sy(ω) = 1
L

L−1∑

ℓ=0

Sv ′(ωℓ), ωℓ = ω

L
− 2πℓ

L
. (29)
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Take the expressions for Sv (ω) in (28) and (29) and use (25)
to substitute for Sg(ω)

Sv (ω) = p |F(ω)|2
[
(1 − p)

2π

∫

θ
Ss(ω − θ) dθ + p Ss(ω)

]

= p(1 − p)

2π

∫

θ
|F(θ)|2Sv ′(ω − θ) dθ

+ p2|F(0)|2Sv ′(ω). (30)

Claim 1: If |F(ω)| has support [−π/L,+π/L], L ≫ 1,
and (6) is true, then the PSD of the output y(n) approx-
imates the PSD of an L-fold decimated version of the
densely sampled input signal s(n) in |ω| ≤ γ π when
p ≫ ρ/(L + ρ). "

Proof: With L ≫ 1, we note that
∫

θ
|F(θ)|2Sv ′(ω − θ) dθ ≤

∫+π/L

θ=−π/L
Sv ′(ω − θ) dθ

which can be approximated by (2π/L) Sv ′(ω). In the second
equation in (30), the first term is much smaller than the second
term if p ≫ 1/(L + 1). Then (30) becomes

Sv (ω) = p |F(ω)|2
[
(1 − p)

2π

∫

θ
Ss(ω − θ) dθ + p Ss(ω)

]

≈ 2πp2

2π
Sv ′(ω).

Now, use the expression for Sy(ω) in (29) to get

1
L

L−1∑

ℓ=0

Sv (ωℓ) = p(1 − p)

2πL

L−1∑

ℓ=0

|F(ωℓ)|2
∫

θ
Ss(ωℓ − θ/L) dθ

+ 2πp2

2πL

L−1∑

ℓ=0

|F(ωℓ)|2Ss(ωℓ) (31)

≈ 2πp2

2πL

L−1∑

ℓ=0

Sv ′(ωℓ) = 2πp2

2π
Sy(ω). (32)

Consider (31): |F(ωℓ)| = 1, |ω| ≤ γ π , and Ss(ω) has the
support [−ρπ/L,+ρπ/L], where ρ ≥ 1. Thus

∫

θ
Ss(ωℓ − θ/L) dθ ≈ (2ρπ/L) Ss(ωℓ). (33)

Thus, for |ω| ≤ γ π , we may approximate (31) as

1
L

L−1∑

ℓ=0

Sv (ωℓ) ≈ 2πp2

2πL

L−1∑

ℓ=0

Ss(ωℓ), for p ≫ ρ/(L + ρ).

Use this instead of (31) to express (31) and (32) as

1
L

L−1∑

ℓ=0

Sv (ωℓ) ≈ 2πp2

2πL

L−1∑

ℓ=0

Ss(ωℓ) ≈ 2πp2

2π
Sy(ω). #

APPENDIX B
OPERATION OF THE POLYPHASE COMPONENTS

Claim 2: Consider a nonzero input sample r(ℓ∗) ̸= 0
such that ℓ∗ ∈ N and (n − Npr)L ≤ ℓ∗ ≤ nL. The only

polyphase component that operates on r(ℓ∗) is fx (!), where
x = m∗L − ℓ∗, with

m∗ =
⌊
ℓ∗ − 1

L

⌋
+ 1 4⇒ x = (L − ℓ∗) + L

⌊
ℓ∗ − 1

L

⌋
. "

Proof: First, suppose (n − Npr)L + 1 ≤ ℓ∗ ≤ nL that
corresponds to the summation term in (15). The polyphase
components that operate on r(ℓ∗) are fx (!), where x = m∗L−
ℓ∗ ∈ 0, L − 1 with m∗ ∈ n − Npr + 1, n. But m∗L − ℓ∗ = x
iff (m∗ − 1)L + (L − 1 − x) = ℓ∗ − 1. Since (L − 1 − x) ∈
0, L − 1, we conclude that L − 1 − x = (ℓ∗ − 1)L . This yields
x = (L − 1) − (ℓ∗ − 1)L = (L − ℓ∗) + L⌊(ℓ∗ − 1)/L⌋. The
claim then follows for (n − Npr)L + 1 ≤ ℓ∗ ≤ nL.

Next, suppose ℓ∗ = (n − Npr)L that corresponds to the
first term in (15), namely, f0(Npr) r((n − Npr)L). When
ℓ∗ = (n − Npr)L is substituted in the claimed expressions for
x and m∗, we get x = 0 and m∗ = npr, which are consistent
with f0(Npr) r((n − Npr)L).
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