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Abstract—Interferometric synthetic aperture radar (InSAR)
observations of wetlands reveal spatially detailed measurements
of water-level changes and quantitative images of flow dynamics.
However, lateral variability of wetland vegetation results in a
heterogeneous scattering medium, which can affect interferomet-
ric coherence levels and can even limit the applicability of the
technique. Here, we analyze coherence variations in Southern
Florida, which consist of various wetland vegetation types, includ-
ing sawgrass, graminoid, cypress, mixed shrubs, and mangrove
marsh. We use JERS-1, ERS-1/2, ENVISAT, and RADARSAT-1
data, to investigate the effect of acquisition parameters and
temporal baseline (time span between acquisitions) on the co-
herence level in the various wetland vegetation environments.
The main findings of our coherence analysis are as follows:
1) Woody wetlands, such as cypress and mixed shrubs swamps,
have higher coherence levels than herbaceous wetlands of saw-
grass and graminoid (cattail) in all SAR data types; 2) the co-
herence level of C-band data is strongly dependent on temporal
baseline, whereas the coherence level of L-band data depends
mainly on perpendicular baseline, but to some degree also on
temporal baseline; 3) backscatter from JERS-1 and RADARSAT-1
is correlated with coherence in four wetland vegetation types
(sawgrass, cypress, mixed shrubs, and mangrove), but ERS
backscatter has no relation to coherence, except over sawgrass
marsh. Finally, our study clearly indicates that high resolution,
HH polarization, and small incidence angle observations are most
suitable for wetland InSAR applications.

Index Terms—Backscatter, coherence, everglades, synthetic
aperture radar (SAR) interferometry, vegetation, wetland.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR images) have been
used for mapping delineation of wetland ecosystems
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by exploiting strong backscatter from forest stands un-
der flood conditions [1]–[5]. The strong enhancement of
backscatter in wetlands results from double-bounce scatter-
ing of the radar signal from the water surface and tree
trunks or branches [1], [6], [7]. Backscatter investigations
showed that herbaceous plants and small shrubs yielded en-
hanced backscatter at C-band [3], [7], and defoliated cypress-
tupelo swamps gave rise to brighter returns even at Ka-band
(1 cm) imagery [8]. The potential of SAR application to wet-
land research has benefited from the use of phase information
via interferometry (InSAR), which has been related to surface
water-level changes [9]–[11]. These observations are very use-
ful for monitoring and managing wetland water resources and
for detecting flow patterns. L-band (wavelength of 23.53 cm)
InSAR observations of wetlands are effective for detect-
ing dynamic water-level topography with a centimeter scale
[11], [12].

While L-band SAR systems [SIR-C, JERS-1, Advanced
Land Observation Satellite (ALOS)] [9], [11]–[13] have proven
useful for interferometric studies of wetlands, fewer studies
are available for C-band (5.6 cm) and X-band (3 cm) data.
Recent studies investigated ERS-1/2 and RADARSAT C-band
SAR interferometry with short acquisition intervals to reduce
temporal decorrelation effects [13]–[16]. Lu and Kwoun [14]
showed in Southeastern Louisiana that C-band ERS-1/2 and
RADARSAT-1 InSAR data acquired over moderately dense
swamp forests with a medium–low canopy closure allow to
measure phase change, which is correlated with water-level
change. Kim et al. [13] also used RADARSAT-1 and ALOS
data to detect water-level changes in Louisiana wetlands.
Hong et al. [17] have presented more recently that the high-
resolution X-band TerraSAR-X data is surprisingly suitable for
wetland interferometric SAR application.

The accuracy of the interferometric water-level change mea-
surements depends on interferometric correlation coefficient
(coherence). However, wetlands are heterogeneous scattering
environments as wetland vegetation varies laterally in response
to water availability, water depth, available nutrients, and other
hydroecological constraints. Thus, it is important to understand
the decorrelation properties over different vegetation types.
Previous studies investigated interferometric SAR phase co-
herence in land cover [18], forest [19]–[21], delta ecozones
[22], vegetated area and urban features [23], glaciers [24], and
oyster sea-farming structures [10]. For wetlands, most previous
InSAR works have focused on the interpretation of hydro-
logical change with observed features of the interferometric
phase. The one exception is the study of Lu and Kwoun [14],
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Fig. 1. (a) Location map of study area showing the general extent of the
Everglades ecosystem [Everglades National Park (ENP); Big Cypress National
Preserve (BCNP); Water Conservation Areas (WCA)]. (b) Ground swath map
of each satellite acquisition track: thick solid lines, thin solid lines, dashed lines,
and white lines represent ERS-1/2, JERS-1, RADARSAT, and ENVISAT track,
respectively.

who presented quantitative coherence analysis of the southern
Louisiana wetlands, but only of the C-band data.

Here, we conduct a robust coherence analysis investigating
the effects of wavelength, look angle, polarization, spatial
resolution, and temporal baseline (time span between ac-
quisitions) on the coherence of various wetland vegetation
types. We used JERS-1 and ERS-1/2 SAR data acquired over
South Florida between 1993 and 1999, and ENVISAT ASAR
and RADARSAT-1 data acquired between October 2004 and
October 2005. Heretofore, we used subsets of data to study
water-level changes and sheet-flow characteristics of the Ev-
erglades wetlands [11], [12], [15]. This paper focuses on the
wetland InSAR technique, rather than on the hydrological
application, by conducting a thorough comparative coherence
analysis of the different data types. We conduct the study
over South Florida because of its heterogeneous wetland en-
vironment consisting of various vegetation types. Based on
the observed interferometric coherence, we evaluate empirical
model describing coherence variations and establish critical
parameters for the usage of wetland InSAR applications.

II. SOUTH FLORIDA WETLANDS

South Florida is one of the most suitable test sites for wetland
study using remote sensing techniques because it is covered
by a large wetland area characterized by a very wide, shallow,
and slow sheet flow. The study area includes the Everglades
National Park (ENP), Big Cypress National Preserve (BCNP),
three water conservation areas (WCA), and Lake Okee-
chobee (see Fig. 1). The weather in South Florida consists
of two seasons: wet season (May–October) and dry season
(November–April). Topography is nearly flat with a maximum
elevation change of 20 m.

Wetlands in the South Florida comprise mainly of freshwater
marshes, freshwater swamps, and coastal mangrove estuaries
(see Fig. 2). The marshes are herbaceous (treeless) wetlands
dominated by vast graminoid (grasses and grass-like plants),
such as cattail or sawgrass. The freshwater swamps (woody

Fig. 2. Pictures of a typical stand of four out of the five vegetation types used
in this paper: Graminoid, sawgrass, cypress, and mangrove marsh.

wetlands) are composed of hardwood forest, pineland savannas,
cypress forest, and prairie [25]. Most of South Florida wetlands
are annually flooded for considerable periods, and some areas
are continuously flooded all year round.

Sawgrass and graminoid prairie marshes are both herba-
ceous wetlands that differ by their vegetation type and density.
Sawgrass marshes are dominated by sawgrass (> 66 %),
whereas the vegetation in graminoid prairie marshes is more
heterogeneous and often dominated by the invasive cattail.
Sawgrass is found in a wide range of ecological settings,
including estuarine and coastal grasslands [26]. In the dense
sawgrass marshes, some plants reach heights of 3 m and form a
near monoculture. In the sparse sawgrass marshes, the species
is usually much shorter, only about a meter in height [27].

Woody wetlands consist of both freshwater swamps and
saltwater mangrove forests. Cypress trees dominate the flooded
freshwater environments, whereas mixed shrubs (e.g., hard-
wood hammock) are found in higher and drier land, such as
tree islands. The mangrove vegetation composes of red and/or
black mangroves, which are found along the coasts within about
10-km-wide intertidal zone. Both cypress and mangrove trees
are found in South Florida wetlands as fully developed tree
communities reaching height of 15–20 m, as well as dwarf
communities were tree height reach only 2–3 m [26].

In this paper, we use the vegetation classification map pro-
duced by the project “Land Cover/Land Use 1999 Mapping
Project,” which is distributed as a vector map by the South
Florida Water Management District (SFWMD) [28]. The map
was produced by photointerpretation of 1999 1:40◦000 scale
color infrared aerial photography. We also used the National
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TABLE I
LIST OF SAR DATA SETS OVER THE EVERGLADES AND ACQUISITION PARAMETERS

Land Cover Database (NLCD) 2001 data [29], which were
generated from Landsat TM imagery and distributed by the U.S.
Geological Survey, as a complementary map. Although wetland
plant communities change with time, we assume for simplicity
that there are no great differences between the observation
periods (∼10 years). Seasonal change in water depth is the
fastest varying biophysical parameter in the Everglades, but
changes are limited. The largest changes occurring in deepest
wetlands reach 1.3 m [26]. In fact, water levels in the study
area have been controlled within a preset level range by the
SFWMD, and consequently, the vegetation and the ecosystem
have not changed much. We used the given land cover maps in
order to classify the vegetation and wetland type in the various
areas during our SAR observation period (1993–2005).

III. SAR DATA AND DATA PROCESSING

A. SAR Data

In this paper, we used SAR data acquired by five satellites
operated by three space agencies. The L-band JERS (JERS-1)
operated by the Japanese Aerospace Exploration Agency from
1992 to 1998. The C-band ERS-1 and ERS-2 and ENVISAT

have been operated by the ESA (ESA) since 1992. The fifth
satellite, the C-band RADARSAT-1, has been operated by
the Canadian Space Agency since 1995. The data from the
JERS-1 and ERS-1/2 were obtained from data archives at the
Japanese and European space agencies. The ENVISAT data
were acquired by ESA according to our acquisition requests.
The RADARSAT data were directly received at the Center for
Southeastern Tropical Advanced Remote Sensing (CSTARS),
which is the University of Miami center for downlinking low-
orbiting remote sensing satellite data. JERS-1 used L-band
(1.28 GHz in frequency or 23.5 cm in wavelength), HH po-
larization, a look angle of 35◦, 75-km swath width, 18-m pixel
resolution, and 44 day repeat orbit. The ERS-1/2, ENVISAT,
and RADARSAT-1 SAR systems operate at C-band (5.3 GHz
in frequency or 5.7 cm in wavelength). ERS-1/2 have ac-
quired VV polarization data at nominal incidence angle of 23◦,
100-km ground swath width, 35 day repeat orbits, and a ground
resolution of about 25 m. ENVISAT and RADARSAT-1 also
acquire C-band data, but with variable acquisition parameters
of different look angle pixel resolution.

Overall, we use in this paper eight swaths covering a
large section of the South Florida wetlands (see Fig. 1). A



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

summary of all the SAR data used here is listed in Table I.
Our archived data set consists of 51 concatenated ERS-1/2 SAR
data (with two or three frames) acquired from two adjacent
descending tracks (240 and 011) between 1993 and 1999, and
13 concatenated JERS-1 data (five-frame) from adjacent de-
scending tracks (463 and 464) between June 1994 and March
1996. The RADARSAT-1 data set was acquired as part of a
test for evaluating optimal acquisition parameters for wetland
InSAR applications. We acquired 22 RADARSAT-1 fine beam
mode images using four different observation modes (see Fig. 1
and Table I). The F1 and F5 modes permit high-resolution data
acquisition, 6 m in range and 9 m in azimuth, with incidence
angles of 37.8◦ and 46.7◦, respectively. Four ENVISAT SAR
images were also used with narrow swath 3, HH polarization,
and an incidence angle of 28.7◦ (see Table I). RADARSAT-1
data spanned almost a full year between October 2004 and
October 2005, and ENVISAT SAR data were acquired between
March and June 2005.

B. Generation of Coherence and Backscatter
Coefficient Images

Raw signal data were processed using the Vexcel FOCUS
module [30]. The software was also used to construct an
interferometric coherence map and a beta nought β0

j (in
decibels) image. The beta nought data were converted to radar
backscatter coefficient sigma nought σ0 using the following
relation [31]:

σ0 = β0
j + 10 log10(sin Ij) (1)

where Ij is an incidence angle as a function of Earth ellipsoid.
Local topography was not taken into account for extracting
sigma nought because the nearly flat terrain of the study area
suggests that the effect of local incidence angle is negligible.
We estimated the calibration accuracy by evaluating the
mean backscatter amplitudes in urban areas. Backscatter
statistics were extracted for a large sample of urban areas in
the eastern part of the study area, where backscatter change
between multitemporal images should be negligible if the radar
calibration is properly carried out. Indeed, differences in the
urban calibration site were less than 2 dB.

We calculate coherence for each interferometric pair of
single-look complex (SLC) data as

γ =

∣∣〈g1g∗2e−iφ
〉∣∣√

〈|g1|2〉 〈|g2|2〉
(2)

where g1 and g2 denote complex pixel values of two SAR
images without any azimuth spectral filtering; e−iφ is a phase
term related to the local topography; the asterisk represents the
complex conjugate; and the angular brackets represent spatial
averaging over a selected window size. The range filtering
to a flat surface was applied during SLC resampling before
coherence estimation [32]. For each data type, different window
sizes reflecting the variable acquisition resolution in azimuth
and range were used to calculate coherence. We used 45 looks
(15 in azimuth and 3 in range) for ERS-1/2 and ENVISAT,
27 looks (9 in azimuth and 3 in range) for JERS-1, and 36 looks

(6 in azimuth and 6 in range) for RADARSAT-1, which cor-
respond roughly to 75 m by 75 m in each satellite data. The
coherence in (2) is a biased estimator depending on the actual
coherence and the number of looks; therefore, the bias inherent
to coherence estimator was corrected [33].

All backscatter and coherence products with radar coordi-
nates (range–azimuth) were transformed to map coordinate
[34], [35], providing an easy analysis of area statistics from
multisatellite and multiimage geometry products. The coordi-
nate error due to orbit uncertainties could be mitigated using
coregistration information between real SAR and digital eleva-
tion model (DEM)-derived SAR intensity image [36]. Here, we
utilized the pregeocoded SAR intensity image for image regis-
tration instead of the DEM-derived backscatter image because
the topography in the study area is so even. After geocoding, an
averaging of an 8× 8 pixel window was performed to minimize
the effects of the radiometric resolution errors. The pixel size
of the final coherence and backscatter images for JERS-1,
ERS-1/2 and ENVISAT was approximately 100 × 100 m and
for RADARSAT-1 50 × 50 m.

IV. COHERENCE ANALYSIS

A. Region Selection of Typical Wetland Vegetation Types

We selected a subset of typical land cover classes in the
southern Florida wetlands in order to characterize coherence
behavior according to vegetation type. Based on the 1999 Land
Cover Map distributed by SFWMD and the NLCD 2001 Land
Cover Map, we selected the following five principal marsh com-
munities: cypress, mixed shrub, mangrove swamp, graminoid
prairie marsh, and sawgrass marsh (see Figs. 2 and 3).
All five types are perennial emergent macrophytes and are
present as monospecific (containing only one species) stands or
as mixtures composed of monospecific clumps. Both graminoid
prairie and sawgrass marshes consist of herbaceous wetlands.
Mixed shrubs are wetland hardwood communities, which are
composed of a large variety of hardwood species. We also
calculated the unbiased coherence values over open water to
determine the level of complete decorrelation. The coherence of
0.14 to 0.16 was observed in different satellites; therefore, the
value of 0.17 was set as a threshold for significant coherence
values in our analysis. Cypress and mixed shrubs wetlands are
located at BCNP area, mangrove swamps are located in the
southern ENP along the coast, and herbaceous marshes are
mostly found in WCA and ENP areas.

We selected a subset of each class with sufficiently large area
from the land cover map in order to avoid the geolocation error
of small stands during a geocoding process. Most parts of the
wetland are subjected to seasonal effects, such as water-level
change (flooded versus unflooded), soil moisture change, and
phenologic change. Because we are interested in evaluating co-
herence variations of each wetland class with respect to various
satellite parameters, it is important to use coherence-wise stable
areas that are free of seasonal effects. A number of studies
showed that variations in flood conditions significantly affect
radar backscatter signal [3], [10], [37], [38]. The backscatter
change in the southern Florida was intensively studied in the
past [4], [5], [39]. For example, Kasischke et al. [39] reported
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Fig. 3. Characteristic marshes in the study area superimposed on ERS multireflectivity SAR image. (a) Selected five wetland marshes based on the 1999 land
cover map distributed from SFWMD and NLCD 2001 land cover map. (b) Five typical marshes with low backscattering variations (2 dB for ERS-1/2 and 2.2 dB
for JERS-1 and RADARSAT) selected for statistical analysis of coherence and backscatter using ERS-1/2, JERS-1, and RADARSAT backscatter variation
maps. White polygons and red polygons indicate open water surface and urban area, respectively. Backscatter and coherence are used to estimate background
noisy coherence and to evaluate radar backscatter calibration accuracy. Black polygon represents sawgrass marsh covered by all of four different RADARSAT
observations.

ERS-2 SAR backscatter change in the range of 1.5–5 dB,
reflecting seasonal changes (mainly due to flooded/unflooded
conditions). These studies also show that SAR backscatter
changes are correlated with water level, soil moisture, and
phenologic changes.

In order to minimize possible seasonal effects associated
with the changes of seasonal water level and vegetation, we
use a multitemporal backscattering response for each satellite to
identify stable areas in time. Using all available imagery of each
satellite, we calculated three backscatter standard deviation
values in decibels, SDERS

σ0 , SDJERS−1
σ0 , and SDRADARSAT

σ0

for ERS-1/2, JERS-1, and RADARSAT-1, respectively. Pixels
with low standard deviation values were considered as sta-
ble scatterers and were included in our analysis. We selected
threshold values of 2 dB for ERS-1/2 and 2.2 dB for JERS-
1 and RADARSAT to determine stable backscatter areas. A
comparison between the regular and the stable scatterer veg-
etation cover maps (see Fig. 3) shows that most unstable
scattering areas occur in sawgrass and graminoid wetlands in

the southern part of WCA and ENP [difference in yellow and
blue coverage between Fig. 3(a) and (b)]. Masking out these
areas of high backscatter deviation minimizes potential errors
of temporal decorrelation because of the decreasing effect of
seasonal water-level change. We used the stable scatterers to
statistically characterize the coherence and backscatter within
each vegetation class. We tested the result of our stable scatterer
analysis by plotting the selected area on an ERS-2 C-VV
mosaic interferogram (see Fig. 4), showing that the selected
areas correlate well with coherent fringe patterns.

B. Coherence Variation

1) JERS-1 Interferograms: The JERS-1 coherence varia-
tion analysis is based on 33 interferometric pairs from 13
SAR acquisitions, which are not having large spatial baseline
close to critical baseline and large Doppler-centroid difference
and showing mean signal more than noise level. The mean



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 4. Mosaic ERS-1/2 C-VV interferogram of South Florida showing phase
differences occurring over a 35-day time interval and the selected areas of stable
backscattering, i.e., colored according to the five marsh types. The western
track (010) covers the time span of 1995/11/7_1995/12/12, and the eastern track
(240) covers the 1998/2/5_1998/3/12. Fringe patterns observed in wetlands are
heterogeneous and discontinuous due to man-made structures, including roads,
levees and canals. The fringes represent phase shift induced by surface water-
level changes.

coherence for each class was estimated by averaging the co-
herence values of all selected pixels.

The results of our JERS-1 coherence analysis are presented
in Fig. 5 for each of the five wetland classes according to the
observations’ temporal (interferogram’s time span) and geo-
metrical (perpendicular) baselines. In general, the coherence is
higher for cypress and mixed shrubs (0.2–0.55), intermediate
for mangroves (0.2–0.5), and low for herbaceous wetlands
(0.2–0.3). For JERS-1 interferometric pairs, the coherence
values of all classes decrease with increasing perpendicular
baseline values. Coherence values of mixed shrubs and cypress
wetlands are almost independent of temporal baseline (at least
up to 2.5 year), whereas those of mangrove, sawgrass, and
graminoid also depend on temporal baseline. However, the
temporal dependence of mangroves is different from that of
herbaceous wetlands. Mangrove swamps decorrelate slowly
over time, whereas herbaceous wetlands decorrelate almost
abruptly after 44 days. In woody wetlands, L-band double
bounce is caused by interaction between the water surface and
trunks or branches, but in herbaceous wetlands, double-bounce
scattering results from interaction between the water surface

and the stalks or roots [1], [3], [4]. Trunks and branches do
not change much over time, but stalks and roots are influenced
more by changes caused by vegetation growth or scatterers
movement by wind. Therefore, it is expected to find large
differences between woody and herbaceous wetlands in terms
of temporal decorrelation.

Coherence values can be approximated by the following
model [18], [33], [40]–[43]:

γ = γthermalγtemporalγDopplerγvolumeγgeometric

≈A ·
(
exp

−Δt
τ

)(
1− Δfdc

Ba

)(
sinc

(
kzΔh

2

))
(3)

where γthermal can be expressed by constant value A. taking
into account both thermal noise and processing artifacts, and
γtemporal, γDoppler, γvolume, and γgeometric represent a tempo-
ral, Doppler, volume, and geometric components, respectively.
γgeometric can be effectively ignored because the range filtering
to a flat surface was applied before coherence estimation and
the slope in Everglades is close to zero [41]. Δt, Ba, and
Δfdc are the time interval between the two data observation,
the azimuth bandwidth (1555 Hz for JERS, and 900 Hz for
RADARSAT-1), and the Dopper-centroid frequency difference,
respectively. For γvolume, a simple uniform scattering model
was used, which is expressed as a function of wavenumber
in the vertical direction (kz = (4πBp)/(λρ sin θ)) and canopy
height variation (Δh). Bp, λ, ρ, and θ are the perpendicular
baseline, wavelength, slant range, and look angle, respectively.
A and τ are unknown coefficients to be estimated, which
characterize the imaged surface. Although the model in (3) is
not the best model, this simple one will be enough to figure
out the amount of temporal decorrelation at several interested
vegetation types.

We used the observed coherence values obtained for each
vegetation class to constrain the model parameters using a best-
fit analysis (see Table II). The analysis estimates three param-
eters related with thermal noise, temporal decorrelation, and
volume decorrelation. The estimated temporal decorrelation
parameter represents decay constant. The results of our analysis
of the expected coherence values are presented in Fig. 5 by
contours and grayscale areas. The expected coherence values
show that, in woody wetlands (cypress and mixed shrubs),
coherence is not sensitive to temporal decorrelation, whereas
in herbaceous and mangrove wetlands, coherence has more
dependence on temporal baselines. Mangrove has higher A of
0.42 than herbaceous wetland’s values of 0.35 and 0.31. The
estimated canopy height variations associated with volumet-
ric decorrelation are very similar within 2.5–2.9 m, although
the mean canopy height is different from each other. The
root-mean-square errors between the measured coherence and
the modeled value are less than 0.05, and the coefficients
of determination R2 are better than 0.60, except in mixed
shrubs.

2) RADARSAT-1 Interferograms: The RADARSAT-1 sys-
tem has an advantage of acquiring data with different incidence
angles and different resolutions (modes). In this paper, we used
RADARSAT-1 images acquired by four different observation
modes (see Fig. 1 and Table I). In our first analysis, we do
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Fig. 5. JERS-1 coherence analysis results for the five wetland vegetation classes plotted as function of perpendicular and temporal baselines. Dot sizes are
proportional to coherence values.

TABLE II
REGRESSION COEFFICIENT PARAMETERS RELATING COHERENCE VALUES IN (3)

not distinguish between the different observation modes and
present all coherence results as a function of temporal and
perpendicular baselines for each wetland type (see Fig. 6).
The results show that cypress, mixed shrubs, and mangrove
classes have higher coherence than herbaceous wetlands. With
an increasing time interval between acquisitions, coherence
decreases for herbaceous wetlands and for mangrove swamps.
A phenological cycle is also observable in both mixed shrubs
and cypress swamps. Because the fine beam swath is narrower
than the standard beam, JERS-1, and ERS-1/2 swathes, we

had a limited coverage of the various class types in a sin-
gle swath. The mixed shrubs and cypress sampled area were
covered by only two of the four swathes, i.e., DF1 and AF5.
The other three classes were covered by all four used beam
modes.

Our results indicate that the coherence is strongly dependent
on the temporal baseline and much less on the perpendicular
one. Sawgrass marsh loses coherence rapidly with increasing
time interval. In 24-day interferograms, sawgrass marsh dis-
plays a similar coherence range (0.25–0.3) to mangrove marsh,
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Fig. 6. (a)–(e) Scatter plot of RADARSAT coherence values for the five wetland vegetation classes. (f) Coherence for sawgrass marsh showing sensitivity of
coherence values to acquisition mode. Gray and black dots represent coherence values of F1 and F5 mode data, respectively.

whereas coherence with a long time interval (> 48-day) has
a low value of about 0.17. The coherence of graminoid class
is slightly larger (about 0.25) than that of sawgrass and is
comparable with the coherence of mangrove. Similar to the
JERS-1 analysis, we use our coherence model (3) to calculate
expected coherence values in three of the five wetland classes:
sawgrass, graminoid, and mangrove. The model was ineffective
for the other two classes because of the narrow range of the
perpendicular baseline in mixed shrubs and cypress. Although
the R2 for RADARSAT is not as good as JERS-1, the point is
that the model results show strong dependence of the temporal
baseline (see Fig. 6), which is in sharp contrast to the JERS-1
L-band results (see Fig. 5). The effect of incidence angle on
the interferometric coherence is important for determining the
most suitable acquisition parameters for wetland monitoring.
While the variation in backscattering power with incidence
angle has been widely known [7], [44], [45], the characteristics
of interferometric coherence in wetlands have not been studied.
Proper assessment of incidence angle effects requires nearly
simultaneous acquisition at a single area. The sawgrass wetland
in Fig. 3 was fortunately covered by four different acquisition
modes. However, we could only use the Fine beam mode 5 (F5)
descending acquisitions for this analysis because the number of
ascending acquisitions is too small for statistical analysis. The
descending data set can be divided into two groups: F1 with
incidence angle of 37.8◦ and F5 with incidence angle of 46.7◦

[see Fig. 6(f)]. Our results show significant differences only

with short temporal baselines. The three 24-day F1 interfero-
grams have higher coherence values than the F5 interferograms.
However, there is no difference between F1 and F5 coherence
in interferograms with a longer period. A possible explanation
for this observed difference is that the smaller incidence angles
allow better vegetation penetration with less energy loss along
the radiation path and consequently increasing the potential
for double-bounce interactions with water surface and stem.
However, our result is only preliminary because it is based
on a small number of F1 mode observations, as well as only
a single vegetation class. In addition, we cannot exclude the
possibility of seasonal effect due to different acquisitions times.
In fact, four F1 mode data used to form the two pairs with
the highest coherence were acquired in the time period be-
tween March 7, and April 2, 2005. Therefore, further analysis
using more SAR acquisitions is needed for better conclusive
results.

3) ERS-1/2 Interferograms: Our ERS-1/2 coherence analy-
sis is based on 261 coherence maps (139 from track 240 and
122 from track 011) that were generated using 51 ERS-1/2
SAR images. Similar to the RADARSAT behavior, ERS-1/2
coherence also shows strong dependence of temporal baseline.
At small temporal baseline (< 35-day), particularly tandem
pairs with a 1-day repeat cycle, all wetland vegetation types
produce high coherence values. ERS-1/2 coherence of all wet-
land types degrades quickly within 35–70 days, indicating
a strong temporal decorrelation. In herbaceous wetlands, a
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coherence level beyond 70 days is very low (< 0.2) and cannot
maintain interferometric phase. In woody wetlands, the phase
decorrelation threshold is reached within 140 days. Unlike in
the JERS and RADARSAT-1 analyses, we were not able to
calculate expected coherence values because RMS errors were
too large to fit to the simple approximation model mainly due
to significant temporal decorrelation.

C. Coherence Comparison Between Spaceborne SAR Systems

We compare between the three SAR systems by plotting
for each vegetation class all calculated coherence values as a
function of perpendicular and temporal baselines (see Fig. 7).
A baseline component was normalized by critical a baseline of
each satellite to accommodate the comparison between differ-
ent spaceborne SAR systems. The theoretical critical baseline
(Bc) was computed as in [18] and [41]. Bc is around 1100 m
for ERS-1/2 and ENVISAT, and 6.5 and 6 km for JERS-1 and
RADARSAT-1 fine beam modes, respectively.

In general, JERS-1 has the best coherence among the four
systems for all wetland vegetation types; ERS-1/2 has much
lower coherence, and the coherence value for RADARSAT-1
lie in between those of JERS-1 and ERS-1/2. Although we
have a small ENVISAT data set (four scenes only), our anal-
ysis indicates that ENVISAT signals have slightly better co-
herence than ERS-1/2. ENVISAT coherence in sawgrass is
comparable with RADARSAT-1, but in the other vegetation
classes, ENVISAT has lower coherence than RADARSAT-1.
The ENVISAT ASAR differs from the ERS-1/2 SAR in the
radar polarization (HH for ENVISAT and VV for ERS-1/2),
and has a slight difference of incidence angle (28.7◦ for EN-
VISAT and 23◦ for ERS-1/2), whereas wavelength (C-band)
and spatial resolution are almost the same in both systems.
The higher coherence of the HH polarization ENVISAT data
suggests that HH polarization is more effective for wetland
InSAR application. Early studies showed that the enhanced
backscattering in wetlands is mainly the product of double-
bounce scattering between an underlying smooth water surface
and trunks and branches [1]. Double-bounce backscattering at
HH is stronger and more coherent than at VV because of the
stronger reflection induced by the Fresnel reflection coefficient
over water for HH polarization ([45], [46]). In fact, reflection
coefficients on trunk and ground surface (or water in wetlands)
play an important role for the backscattering intensity. HH
backscatter is usually four to six times stronger than VV for
the trunk–ground structure [46]. The difference in coherence
with polarization had been also reported in studies of SIR-C
[9], [47] and TerraSAR-X data [17]. Both RADARSAT-1 and
ENVISAT have C-band wavelength and HH polarization, but
they have different resolution; the difference of incidence
angle (ENVISAT with steep incidence angle might be more
favorable) is almost negligible. High spatial resolution such
as RADARSAT-1 fine beam mode appears to produce high
coherence. Fig. 7 clearly supports that JERS-1 with L-band
and HH polarization is the best system for the detection of
water-level change using interferometric phase in all wetland
vegetation types (herbaceous and woody wetlands), and high-

resolution RADARSAT-1 with C-band and HH polarization is
the second best.

D. Coherence Levels in Relation to the SAR
Backscatter Coefficient

We investigate the relations between a backscatter coefficient
and a coherence level by calculating the mean values for the
five wetland classes. As in the previous coherence analyses,
we use data from the “stable areas” in order to minimize
seasonal effects. Mean backscatter images [see Fig. 8(a)–(c)]
were generated by averaging all available geocoded multitem-
poral backscatter images, whereas the mean coherence image
were generated from several good interferograms with small
spatial baseline and short acquisition time interval in order
to highlight the coherence variation depending on vegetation
types. We selected 36 ERS-1/2 interferometric pairs with
less than 200 m (∼ Bc / 6) perpendicular baseline and less
than 120-day time interval to generate mean coherence image
[see Fig. 8(e)]. Similarly, the mean coherence images of
JERS-1 and RADARSAT [see Fig. 8(d) and (f)] were gener-
ated from 4 and 28 interferograms with a time period of less
than 120 days and perpendicular baseline of less than 1 km
(∼ Bc / 6).

The three mean backscatter images show similar patterns
of high scattering values in the eastern and western sections
of South Florida and variable values in the central part [see
Fig. 8(a)–(c)]. These backscattering characteristics similar to
those reported in previous backscattering studies on wetlands
[2], [3], [37], [38]. The high backscattering values (brighter)
in the western part occur over the cypress and mixed shrubs
wetlands in the BCPN area (see Figs. 1 and 3), whereas the
high values in the eastern part occur mostly over the Miami
Fort Lauderdale urban area and also over unclassified hammock
hardwood (mixed shrub) vegetation in the southeastern part of
the Everglades [white area in Fig. 3(b)]. The lower (darker) and
variable mean backscattering values occur in the central part
of South Florida over herbaceous wetlands in the WCA and
ENP areas. The scattering level in these herbaceous wetlands
is lowest (darkest) for JERS-1, intermediate for ERS-1/2, and
highest (brightest) for RADARSAT. Some of the sawgrass
marsh area of a triangular shape in the RADARSAT image [see
Fig. 8(c)] is as bright as the urban area to its east. In all three
mean backscatter images, the mangrove wetlands occupying
most of the western shores show an intermediate scattering
level, lower than the cypress and mixed shrubs in the western
part and higher than the herbaceous wetlands in the central part
of South Florida.

The mean coherence images show an overall similar spa-
tial pattern to the mean backscatter images but with sharper
contrast (see Fig. 8). The mean coherence images show a
high coherence level (bright) in the western woody wetlands
of the BCNP and in the urban areas. They also show a low
coherence level (darker) in the central herbaceous wetlands and
variable coherence level in the mangrove area along the western
shores.
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Fig. 7. Comparison between the coherence obtained with the JERS-1, RADARSAT, ERS, and ENVISAT SAR data for each of the five wetland classes as a
function of temporal and perpendicular baselines. The perpendicular baseline is normalized by the critical baseline of each SAR system.

We conducted a quantitative comparison between the mean
backscatter and coherence for all five wetland types (see
Fig. 9). Backscattering intensity of JERS-1 and RADARSAT-1

resulted in almost the same mean (within only 1 dB differ-
ence) and deviation, except for sawgrass wetland. Over all
classes ERS backscatter was lower than RADARSAT-1 by
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Fig. 8. (Top) (a) Mean SAR backscatter images of JERS-1, (b) ERS-1/2, and (c) RADARSAT fine beam mode. (Bottom) Mean coherence images of
(d) 25 JERS-1 SAR interferometric pairs with less than 3-km perpendicular baseline, (e) 36 ERS-1/2 SAR pairs with less than 200-m baseline and 120-day
time interval, and (f) 36 RADARSAT fine beam mode pairs with less 1 km baseline and 120 days.

Fig. 9. Mean backscatter coefficients and coherence of the five wetland classes. The vertical bars mark the range of one standard deviation of the mean values.
All classes show relative coherence levels with respect to each satellite system. The range of JERS, RADARSAT, ERS SAR coherence mean and backscatter
coefficient mean with one standard deviation values from each wetland classes.

3-5 dB, but the variation trend in terms of vegetation class
was very similar. Mixed shrubs and cypress produced higher
backscatter coefficient in all satellite systems, whereas saw-

grass, graminoid, and mangrove (except JERS-1) had lower
backscatter. The L-band JERS-1 mean backscatter is lowest
over sawgrass marsh and relatively high over mangrove swamp.
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Based on Fig. 9, we come to the conclusion that the coherences
of cypress and mixed shrubs are higher than that of herba-
ceous wetlands, and JERS-1 coherence over mangrove swamps
has intermediate values, between cypress and herbaceous
marshes.

A backscatter coefficient depends on a combination of sev-
eral wetland properties, including biomass, vegetation height,
soil moisture, flooded water level, and vegetation density
[5]–[7], [37], [39], [48]. Therefore, it is also interesting to
examine the relationship between backscatter and coherence.
The results of our analysis are presented in Fig. 10, by plot-
ting the estimated mean coherence with standard deviation
against the mean backscattering values for the five vegetation
classes. The most intriguing result is that ERS backscatters
show no relation to coherence, except in sawgrass marsh,
whereas backscatters from JERS-1 and RADARSAT-1 show
close relations to coherence in four wetland vegetation types
(sawgrass, cypress, mixed shrubs, and mangrove).

The JERS-1 analysis indicates an almost linear relations
between coherence and backscattering at low scattering (−18 to
−10 dB) levels [see Fig. 10(a)]. The linear relations between the
two observables continue for the woody wetlands (cypress and
mixed shrubs) and to some degree for mangroves and sawgrass
at higher scattering levels. However, coherence over graminoid
wetlands becomes saturated at about 0.3 and hence shows no
linear correlation with backscattering at higher backscattering
levels. For JERS-1, high coherence is a good indicator for a high
backscatter coefficient, but a high backscatter coefficient does
not always produce high coherence in herbaceous wetlands [see
Fig. 10(a)].

For RADARSAT-1, the correlation between coherence and
backscatter coefficient is less pronounced than for the JERS-1.
At lower backscatter values (< −8 dB), there is no correlation
between the two observables [see Fig. 10(b)]. Nevertheless, a
general increase in the coherence after about −8 dB is iden-
tified, except for graminoid. Similar to the results of JERS-1,
high coherence levels are generally indicators for high
backscatter levels, particularly in woody wetlands. However,
backscatter levels are not good indicator for coherence levels.
The ERS-1/2 analysis yields no significant correlation between
backscattering and coherence [see Fig. 10(c)]. The coherence
level at all vegetation types is low (0.2–0.3) and not indicative
of the much wider backscattering range extending from −18 to
−10 dB.

The positive backscattering–coherence correlation found for
the JERS-1 and RADARSAT data suggests that the relations
between these two observables have stronger dependence on
polarization than on the radar wavelength. Double-bounce
scattering in HH polarization is much stronger than in VV
polarization [13], [46]. Backscattering in ERS-1/2 with short
wavelength and VV polarization might be dominated by vol-
ume scattering from leaves and canopies of vegetation, as
shown in [49]. Table III summarizes the correlation coefficients
between the mean backscatter coefficient and the mean coher-
ence image for each satellite according to the five vegetation
types. JERS-1 backscatter correlates relatively well with co-
herence of 0.33–0.66 for all wetland types. For RADARSAT-1,
the correlations of woody wetlands (0.21–0.66) are as high as

Fig. 10. Relations between mean interferometric coherence and mean
backscatter for several wetland vegetation classes according to satellite sys-
tems: (a) JERS-1, (b) RADARSAT, and (c) ERS-1/2. Vertical line marks one
standard deviation of coherence estimation.
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TABLE III
SUMMARY OF CORRELATION COEFFICIENTS BETWEEN MEAN BACKSCATTER AND MEAN COHERENCE FOR FIVE MARSH AREAS

IN THE SOUTH FLORIDA

that by JERS-1, but significantly lower at herbaceous wetlands.
The results suggest that the correlation between coherence and
the backscatter coefficient over wetlands is best obtained with
L-band HH-polarization.

V. CONCLUSION

We used a total of 90 repeat-pass JERS-1, ERS-1/2,
RADARSAT-1, and ENVISAT SAR data acquisitions to cal-
culate coherence variations for five typical wetland vegetation
types (sawgrass, graminoid, cypress, mixed shrubs, and man-
grove) in South Florida. To minimize the effect of water-level
changes on coherence at multitemporal data, we conducted our
analysis for each vegetation class on selected areas with low
backscatter deviation as indicators for stable wetland extent.
Statistics were extracted and then analyzed in connection with
temporal and perpendicular baselines, as well as polarization,
incidence angle, and pixel resolution. The main conclusions of
our coherence analysis are as follows:

1) Freshwater woody wetlands (cypress and mixed shrubs
swamps) have higher coherence levels than herbaceous
wetlands (sawgrass and graminoid marshes). Saltwater
woody mangrove wetlands have intermediate coherence
values, higher than those of the herbaceous wetlands, but
lower than those of the freshwater woody ones.

2) The coherence level of L-band data depends mainly on
perpendicular baseline. In herbaceous wetlands, the co-
herence also depends on temporal baseline. In herbaceous
wetlands, interferometric phase (coherence > 0.2) can be
maintained over six month and even longer, depending
on volume decorrelation by the perpendicular baseline. In
woody wetlands, the phase can be maintained even after
three years.

3) The coherence level of C-band data is strongly dependent
on temporal baseline. Due to the fast decorrelation of
the ERS-1/2 C-VV data, interferometric phase (coher-
ence > 0.2) can be maintained in herbaceous wetlands
only over short temporal baselines (< 70 days). The
RADARSAT C-HH data can maintain the phase in herba-
ceous wetlands over longer time periods, extending over
72 days and even 96 days. In woody wetlands, ERS-1/2
can maintain a coherent phase within 70 days, whereas
RADARSAT maintains a phase after a year.

4) A comparative analysis between coherence and the
backscattering coefficient indicates that backscattering
from JERS-1 and RADARSAT-1 is correlated with co-
herence in four wetland vegetation types (sawgrass, cy-
press, mixed shrubs and mangrove). However, ERS-1/2
backscattering has no relation to coherence, except over
sawgrass marsh, most likely due to dominant volume
scattering from leaves and canopies.

5) Based on our coherence analysis, we conclude that high
resolution, HH polarization, and small incidence angle
observations are most suitable for the wetland InSAR
applications.
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