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ABSTRACT
Sediment cores from Karagan Lagoon in southeastern Sri Lanka retrieved deposits from 

the A.D. 2004 Indian Ocean tsunami and older similar deposits that provide evidence for 
a tsunami 2417 ± 152 cal. (calendar) yr B.P. to 2925 ± 98 cal. yr B.P., and for six tsunamis 
between 4064 ± 128 cal. yr B.P. and 6665 ± 110 cal. yr B.P., a period for which the sediment 
record appears continuous. Radiocarbon dating indicates that the recurrence interval is 
variable, ranging from 181–517 yr to 1045 ± 334 yr, with a mean recurrence interval of 
434 ± 40 yr during the ca. 4000–7000 cal. yr B.P. continuous interval. Assuming that these 
tsunamis were generated by giant earthquakes along the Sumatra-Andaman subduction 
zone, a reasonable assumption for this far-field transoceanic location, this record extends 
the giant-earthquake history for the Indian Ocean region. The longest recurrence interval 
of more than 1000 yr implies that earthquakes along the subduction zone may reach twice 
the size of the 2004 earthquake.

INTRODUCTION
The 26 December 2004, magnitude (M) 

9.2, Sumatra-Andaman earthquake and result-
ing transoceanic tsunami caught the world off 
guard, killing more than 230,000 people. More 
than 3000 people were killed in the town of 
Hambantota located in southeastern Sri Lanka 
(6.2500°N, 81.1667°E) (Anputhas et al., 2005). 
The tsunami arrived from the east, destroyed 
the low-lying parts of the town, and inundated 
Karagan Lagoon (6.132456°N, 81.121834° E) 
(Fig. 1A), depositing sand over the town and 
into the lagoon (Figs. DR1–DR3 in the GSA 
Data Repository1). Tsunami inundation in 
Hambantota extended up to 3 km inland, the 
maximum wave height was 6.1 m, and runup 
was 11 m (Wijetunge, 2006; Goff et al., 2006). 
Anecdotal evidence from the Mahāvaṃsa, Sri 
Lanka’s national chronicle, suggests that a pre-
vious tsunami occurred in 200 B.C. (Geiger 
and Bode, 1964).

The 2004 tsunami deposited a layer of sedi-
ment in the eastern part of Karagan Lagoon. 
To search for paleotsunamis, we collected 22 
sediment cores, 0.5–4.0 m in length (Fig. 1; 
Fig. DR4; Table DR1). The evolution of the 
lagoon is related to Holocene sea-level rise and 
the variability in aridity due to changes in the 
Indian monsoon system during the past 7000 
yr (Jackson, 2008; Ranasinghe et al., 2013a, 
2013b). A relatively fast rate of mid-Holocene 
sea-level rise started at ca. 7300 cal. (calendar) 

yr B.P., submerged the Sri Lankan coastline, 
and established Karagan Lagoon (Ranasinghe 
et al., 2013a). In 2004, Karagan Lagoon was 
separated from the sea by a stretch of sand 
dunes 15 m high and 100–200 m wide along 
the lagoon’s southern coastline with one artifi-
cial cut (ca. A.D. 1998), while the eastern por-
tion was separated from the sea by the town 
of Hambantota (Figs. DR5 and DR6). Because 
Karagan Lagoon remained a low-lying area 
throughout the past 7000 yr, it is an ideal 
repository for paleotsunami events.

1GSA Data Repository item 2014305, Figures 
DR1–DR15 and Tables DR1–DR5, is available online 
at www.geosociety.org/pubs/ft2014.htm, or on request 
from editing@geosociety.org or Documents Secre-
tary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.
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Figure 1. A: Inundation by the 26 December 2004 tsunami (yellow line) along Sri 
Lanka’s southeastern coastline showing that most coastal lagoons were inundated. 
Satellite image predates the 2004 tsunami. B: Core locations in Karagan Lagoon, 
color-coded according to sand deposits. D1–D10 are deep cores, 1.0–4.0 m in total 
depth; S1–S12 are shallow cores, <1.0 m in depth. Both the 2004 tsunami and paleo
tsunami deposits are confined to the eastern portion of Karagan Lagoon, except 
in core D7 where the 2004 tsunami entered via an artificial cut (ca. A.D. 1998). Map 
depicts Karagan Lagoon at the time of the 2004 tsunami and core collection from 
2005–2006, prior to the construction of the Port of Hambantota.

 as doi:10.1130/G35796.1Geology, published online on 15 August 2014



2	 www.gsapubs.org  |  October 2014  |  GEOLOGY

TSUNAMI DEPOSITS
Karagan Lagoon sediments consist of silici-

clastic clays and silt with traces of fine-grained 
quartz sand. The in-situ fauna consists mainly 
of molluscs, benthic foraminifera (e.g., Ammo-
nia beccarii), and ostracodes. The 2004 tsunami 
deposit was present near the top of 16 of the 22 
cores (Fig. 1B; Fig. DR7). The deposit consists 
of very fine to very coarse sand composed of 
dominantly quartz grains with lesser amounts of 
other minerals, marine benthic and planktonic 
foraminifera (including Globigerina sp.), some 
molluscs (whole and/or fragments), and carbon-
ate grains. It varies in thickness from 1 to 22 
cm influenced by localized microtopography, in 
some places displays multiple cycles of grading, 
and typically has a sharp erosional basal bound-
ary (Fig. 2; Figs. DR7–DR9). Cores from the 
western part of the lagoon do not contain sand, 
except core D7 that contains a 2004 tsunami 
deposit due to inundation through the artificial 
cut (ca. 1998) (Fig. 1B; Fig. DR6).

Seven layers of sand deposits were found 
deeper in six cores; however, no core contains all 
eight deposits (Fig. 1B; Table 1). These deeper 
sand deposits feature similar provenance, grain 
size, and thickness to the 2004 tsunami deposit 
(Figs. DR10 and DR11) (Jackson, 2008). These 
deeper deposits also contain marine foraminifera 
(dominantly Globigerina sp., Quinqueloculina 
sp., and Elphidium advenum) that document that 
the sediment was transported from the offshore 
marine environment. Just like the 2004 tsunami 
deposits, the deeper sand deposits are confined 
to the eastern portion of the lagoon, which is the 
direction from which tsunamis from the Suma-
tra-Andaman subduction zone arrive (Fig. 1). 
Based on their sedimentological similarity to the 
2004 tsunami deposit, clear marine influence, 
and spatial distribution, we interpret the deeper 
sand deposits to be seven paleotsunami deposits.

Deposition by tropical cyclones can be ruled 
out for three reasons. First, Karagan Lagoon is 
located near the equator (~6°N) and is rarely 
affected by tropical cyclones. Second, the sand 
layers extend significantly beyond typical storm 
inundation limits (300 m) (Morton et al., 2007). 
Third, the deposits lack common storm-related 
sedimentary structures. Deposition by riverine 
input or monsoonal flooding can also be elimi-
nated because the lagoon is not fed by rivers, the 
sand layers are marine in origin, and the depos-
its are confined to the eastern portion of the 
lagoon. Therefore, tsunamis are the only likely 
depositional mechanism for the sand layers.

TSUNAMI CHRONOLOGY
To decipher the timing of the paleotsunami 

deposits, we used accelerator mass spectroscopy 
(AMS) radiocarbon methods to date the bulk 
organic content of the sediment immediately 
above and below the deposits (Table 1; Fig. DR12; 
Tables DR2 and DR3). Material from within the 
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Figure 2. Paleotsunami deposits I–V in core (Karagan Lagoon, Sri Lanka), showing top sec-
tions of cores D1, D2, D3, D4, and S2. Shown are core photographs, interpretations, and 
radiocarbon dates reported as m ± 2s cal. (calendar) yr B.P., where present is defined as A.D. 
1950. Cores D1, D2, D3, and S2 collectively contain the A.D. 2004 tsunami deposit (tsunami 
I) and four sand layers interpreted as paleotsunami deposits (tsunamis II–V) deposited prior 
to 5500 cal. yr B.P. Tsunamis III–V correlate stratigraphically, as shown by the presence of 
evaporites above tsunami III and by the dates. Core D4 does not contain any tsunami depos-
its, though it features the same evaporite horizon that is present in cores D3, S2, and D1.

TABLE 1. TSUNAMI DEPOSITS RECORDED IN KARAGAN LAGOON, SRI LANKA

Tsunami 
deposit

Minimum 
top  

depth in 
cores*

(m)

Maximum 
bottom 
depth in 
cores*

(m)

Age above 
tsunami deposit†

(µ ± 2σ calendar 
yr B.P.)

Age below 
tsunami deposit†

(µ ± 2σ calendar 
yr B.P.)

Midpoint age of 
tsunami deposit§

(calendar yr B.P.)

Cores containing 
deposits

 I# 0.00 0.22 – – 26 December 2004 S1–S12; D1–D3, D7
II 0.14 0.19 2417 ± 152 2925 ± 98 2700 D2
III 0.33 0.58 4064 ± 128 4331 ± 126 4200 S2, D1, D3, (S6††)
IV 0.45 0.62 4331 ± 126 4583 ± 196 4500 S2, D1, D3
V 0.51 1.06 4764 ± 140 5152 ± 178 5000 D1, D2, D3, (S9††)

 VI# 1.00 2.09 6197 ± 156 6249 ± 68 6200 D1, D2, D3
 VII# 2.77 2.81 6249 ± 68 6455 ± 118 6400 D1, (D2**)
 VIII# 3.24 3.73 6455 ± 118 6665 ± 110 6600 D1, D3, (D2**)

Note: Raw data and calibrations are described in Tables DR2 and DR3 and in Figure DR12 (see text footnote 1).
*For top depths (m), the shallowest occurrence in the suite of cores is recorded. For bottom depths (m), the deep-

est occurrence in the suite of cores is recorded. 
†For ages above the tsunami deposit, the oldest radiocarbon age date (µ) was selected. For ages below the tsu-

nami deposit, the youngest radiocarbon age date (µ) was selected. This produces the most constrained time range 
for each tsunami event.

§The midpoint ages of tsunamis II–VIII were calculated as the midpoint between the oldest µ and youngest µ 
calibrated ages, rounded to the nearest hundredth year (Fig. DR12).

#Shown in Figures DR7 and DR13–DR15.
**Possible correlation, but below 2.0 m, core D2 is bioturbated or was possibly disturbed during coring.
††Possible correlation to cores S6 and S9, respectively, based on stratigraphy.
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deposits was not dated because tsunamis entrain 
and transport sediments and microfauna from a 
variety of sources. AMS radiocarbon ages were 
calibrated using OxCal version 4.1 (https://c14​
.arch.ox.ac.uk/embed.php?File=oxcal.html; 
Bronk Ramsey, 2009) using calibration curve 
IntCal09 (Reimer et al., 2009) and are reported 
as m ± 2s cal. yr B.P., where present is defined 
as A.D. 1950. The resultant ages produce a time 
range for each tsunami event, with the minimum 
age above and the maximum age below the 
deposit (Table 1; Fig. DR12).

The youngest paleotsunami deposit is only 
found in core D2 and has an estimated age of 
2417 ± 152 to 2925 ± 98 cal. yr B.P., which 
may correlate to the tsunami mentioned in the 
Mahāvaṃsa (tsunami II, Table 1; Fig. 2). Below 
a distinct evaporite horizon, there are three paleo-
tsunamis deposits with ages of: 4064 ± 128 to 
4331 ± 126 cal. yr B.P. (tsunami III), 4331 ± 
126 to 4583 ± 196 cal. yr B.P. (tsunami IV), and 
4764 ± 140 to 5152 ± 178 cal. yr B.P. (tsunami 
V) (Table 1; Fig. 2). These tsunami deposits are 
well constrained stratigraphically because the 
ages above, between, and below the deposits 
from the different cores fall within the same 
range. Three deeper paleotsunami deposits have 
estimated ages of: 6197 ± 156 to 6249 ± 68 cal. 
yr B.P. (tsunami VI), 6249 ± 68 to 6455 ± 118 
cal. yr B.P. (tsunami VII), and 6455 ± 118 to 
6665 ± 110 cal. yr B.P. (tsunami VIII) (Table 1; 
Figs. DR13–DR15). For tsunamis VII and VIII, 
the age above the deposits equals the age below 
the subsequently younger deposit because there 
is only one age date between the two deposits, 
therefore the ages are not as well constrained as 
for tsunamis III–V.

From 7000 to 4000 cal. yr B.P., 3.5 m of sedi-
ment was deposited, whereas only 0.5 m of sedi-
ment accumulated in Karagan Lagoon from 4000 
cal. yr B.P. to present (Fig. 3). The sedimentation 
rates are related to the rate of sea-level change. 
Sea level rose to ~1.5 m higher than today until 
ca. 4900 cal. yr B.P. and then started to lower 
at ca. 3000 cal. yr B.P. to its present position 
(Ranasinghe et al., 2013a). The stabilization and 
slight fall of sea level after this time resulted in 
a reduced sedimentation rate in the lagoon. This, 
combined with the fact that tsunamis can erode 
and rework deposits from previous events, makes 
preservation of deposits less likely. Consequently, 
the preservation of the tsunami events is higher in 
the older strata of the cores (ca. 7000–4000 cal. yr 
B.P.), and additional tsunamis may have affected 
Karagan Lagoon over the past 4000 yr but only 
one tsunami deposit, in addition to the 2004 tsu-
nami deposit, is preserved.

INDIAN OCEAN TSUNAMI HISTORY
Karagan Lagoon appears to contain an unin-

terrupted record of Indian Ocean tsunami his-
tory from ca. 7000–4000 cal. yr B.P. during 
which six tsunamis occurred (tsunamis III–VIII, 

Table 1). From 4000 cal. yr B.P. to present, only 
one paleotsunami (tsunami II) and the 2004 tsu-
nami are recorded.

Paleotsunami deposits from Karagan Lagoon 
correlate with other sand deposits found along 
the southern coast of Sri Lanka. Three tsunami 
deposits with ages of 4200, 4500, and 5000 cal. 
yr B.P. found in Kirinda and Okanda Lagoons 
30 km and 80 km to the east were likely depos-
ited by tsunamis III, IV, and V, respectively 
(Ranasinghage, 2010; Fig. 1; Table 1; Table 
DR4). Abeyratne et al. (2007) dated a sand layer 
at 4829 ± 362 cal. yr B.P. in Kirinda Lagoon 
that is coeval with tsunami V (Table DR4). Two 
deposits found 130 km to the west in Peraliya 
Lagoon could have been deposited by tsunamis 
II and III, but their radiocarbon ages are incon-
clusive (Dahanayake et al., 2012). One deposit 
from Panama Lagoon has an age of 6817 ± 132 
cal. yr B.P. and could correlate to tsunami VIII 
(within the ± 2s range) (Ranasinghage, 2010).

Only one core in Karagan Lagoon contains a 
paleotsunami deposit younger than 4000 cal. yr 
B.P., but regional evidence provides information 
about tsunamis during this period. Two paleo-
tsunami deposits are reported in southeast India 
(ca. 1000 and 1500 cal. yr B.P.) (Rajendran et 
al., 2006, 2011), three in northern Sumatra (A.D. 
780–990, 1290–1400, and 1907) (Monecke et 
al., 2008), and up to five in the Andaman and 
Nicobar Islands (all within the past 2000 yr) 
(Rajendran et al., 2007; Rajendran, 2013) (Table 
DR4). Several studies have identified paleotsu
nami deposits in Thailand including two in Phra 
Thong (550–700, <2200–2400 sidereal yr B.P.) 
(Jankaew et al., 2008), three in Ban Bang Sak 
(500–700, 1180–1350, and <2000 cal. yr B.P.) 
(Brill et al., 2011), and one on the Andaman 
Coast (2720–4290 cal. yr B.P.) (Rhodes et al., 
2011) (Table DR4). In addition, six sedimen-

tary deposits are identified in the Rasdhoo Atoll 
Lagoon, Maldives (420–890, 890–1560, 2040–
2340, 2420–3380, 3890–4330, and 5480–5760 
cal. yr B.P.) (Klostermann et al., 2014). It is 
unclear whether all deposits represent tsuna-
mis comparable in size to the 2004 event, but 
previous megathrust ruptures similar to that of 
2004 have been inferred from uplifted corals off 
northern Sumatra (Meltzner et al., 2010).

The oldest deposit reported by Jankaew et 
al. (2008) in Thailand (<2200–2400 sidereal 
yr B.P.) may correlate to tsunami II and to the 
tsunami reported in the Mahāvaṃsa. Two of the 
older deposits from the Maldives (2420–3380 
and 3890–4330 cal. yr B.P.) may correlate to 
tsunamis II and III, respectively (Klostermann et 
al., 2014). The Thailand deposit 2720–4290 cal. 
yr B.P. reported by Rhodes et al. (2011) could 
also correlate to tsunami II or III. A paleoearth-
quake at 6500–7000 cal. yr B.P. recorded in 
Aceh, Indonesia, may correlate with tsunami 
VIII (Grand Pre et al., 2012).

IMPLICATIONS
The Karagan Lagoon record extends the history 

of giant earthquakes along the Sumatra-Anda-
man subduction zone, assuming that earthquakes 
from this plate boundary caused the tsunamis. We 
find a mean recurrence interval of 363 ± 102 yr 
for the well-constrained tsunamis III–V, and 434 
± 40 yr for tsunamis III–VIII (Table DR5). The 
shortest time between two consecutive tsunamis 
during the time period of 7000–4000 cal. yr B.P. 
is 181–517 yr (between tsunamis IV and V). The 
longest time is 1045 ± 334 yr and is documented 
in three cores (D1, D2, D3) (between tsunamis 
V and VI; Table DR5). This wide range of times 
between major tsunami-generating earthquakes 
adds Sumatra-Andaman to the list of subduction 
zones that exhibit a great variability in rupture 
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mode, which has been observed in Cascadia and 
Chile (Satake and Atwater, 2007) and is under 
investigation for Japan.

The long hiatus period between two consecu-
tive tsunamis of 1045 ± 334 yr is approximately 
twice the interevent period prior to the 2004 
earthquake (Rajendran, 2013). This length of 
time between major earthquakes shows that the 
plate boundary fault is capable of accumulating 
a slip deficit of 40–50 m between earthquakes 
in the southern half of the rupture zone with a 
relative plate convergence rate of 40–50 mm/yr 
(McCaffrey, 2008). Such large accumulation 
of stress, if released in a complete stress-drop 
rupture similar to that off of Japan in A.D. 2011 
(Lin et al., 2013; Hasegawa et al., 2011), would 
produce an earthquake up to twice the size of 
the 2004 event.

The results of this study confirm that Sri 
Lanka and much of the Indian Ocean basin is 
affected by large tsunamis at non-uniform inter-
vals, from a few hundred years to over a thou-
sand years, and which could be as large or even 
larger than the 2004 tsunami.
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